Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Crit Care Med ; 47(3): 377-385, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30624279

RESUMO

OBJECTIVES: Incomplete or ambiguous evidence for identifying high-risk patients with acute respiratory distress syndrome for enrollment into randomized controlled trials has come at the cost of an unreasonable number of negative trials. We examined a set of selected variables early in acute respiratory distress syndrome to determine accurate prognostic predictors for selecting high-risk patients for randomized controlled trials. DESIGN: A training and testing study using a secondary analysis of data from four prospective, multicenter, observational studies. SETTING: A network of multidisciplinary ICUs. PATIENTS: We studied 1,200 patients with moderate-to-severe acute respiratory distress syndrome managed with lung-protective ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We evaluated different thresholds for patient's age, PaO2/FIO2, plateau pressure, and number of extrapulmonary organ failures to predict ICU outcome at 24 hours of acute respiratory distress syndrome diagnosis. We generated 1,000 random scenarios as training (n = 900, 75% of population) and testing (n = 300, 25% of population) datasets and averaged the logistic coefficients for each scenario. Thresholds for age (< 50, 50-70, > 70 yr), PaO2/FIO2 (≤ 100, 101-150, > 150 mm Hg), plateau pressure (< 29, 29-30, > 30 cm H2O), and number of extrapulmonary organ failure (< 2, 2, > 2) stratified accurately acute respiratory distress syndrome patients into categories of risk. The model that included all four variables proved best to identify patients with the highest or lowest risk of death (area under the receiver operating characteristic curve, 0.86; 95% CI, 0.84-0.88). Decision tree analyses confirmed the accuracy and robustness of this enrichment model. CONCLUSIONS: Combined thresholds for patient's age, PaO2/FIO2, plateau pressure, and extrapulmonary organ failure provides prognostic enrichment accuracy for stratifying and selecting acute respiratory distress syndrome patients for randomized controlled trials.


Assuntos
Seleção de Pacientes , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Síndrome do Desconforto Respiratório/diagnóstico , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Prognóstico , Estudos Prospectivos , Síndrome do Desconforto Respiratório/fisiopatologia
2.
Crit Care Med ; 45(5): 843-850, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28252536

RESUMO

OBJECTIVES: The driving pressure (plateau pressure minus positive end-expiratory pressure) has been suggested as the major determinant for the beneficial effects of lung-protective ventilation. We tested whether driving pressure was superior to the variables that define it in predicting outcome in patients with acute respiratory distress syndrome. DESIGN: A secondary analysis of existing data from previously reported observational studies. SETTING: A network of ICUs. PATIENTS: We studied 778 patients with moderate to severe acute respiratory distress syndrome. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We assessed the risk of hospital death based on quantiles of tidal volume, positive end-expiratory pressure, plateau pressure, and driving pressure evaluated at 24 hours after acute respiratory distress syndrome diagnosis while ventilated with standardized lung-protective ventilation. We derived our model using individual data from 478 acute respiratory distress syndrome patients and assessed its replicability in a separate cohort of 300 acute respiratory distress syndrome patients. Tidal volume and positive end-expiratory pressure had no impact on mortality. We identified a plateau pressure cut-off value of 29 cm H2O, above which an ordinal increment was accompanied by an increment of risk of death. We identified a driving pressure cut-off value of 19 cm H2O where an ordinal increment was accompanied by an increment of risk of death. When we cross tabulated patients with plateau pressure less than 30 and plateau pressure greater than or equal to 30 with those with driving pressure less than 19 and driving pressure greater than or equal to 19, plateau pressure provided a slightly better prediction of outcome than driving pressure in both the derivation and validation cohorts (p < 0.0000001). CONCLUSIONS: Plateau pressure was slightly better than driving pressure in predicting hospital death in patients managed with lung-protective ventilation evaluated on standardized ventilator settings 24 hours after acute respiratory distress syndrome onset.


Assuntos
Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Adulto , Idoso , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Índice de Gravidade de Doença , Capacidade Vital
3.
J Clin Med ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542033

RESUMO

Background: The ability to predict a long duration of mechanical ventilation (MV) by clinicians is very limited. We assessed the value of machine learning (ML) for early prediction of the duration of MV > 14 days in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Methods: This is a development, testing, and external validation study using data from 1173 patients on MV ≥ 3 days with moderate-to-severe ARDS. We first developed and tested prediction models in 920 ARDS patients using relevant features captured at the time of moderate/severe ARDS diagnosis, at 24 h and 72 h after diagnosis with logistic regression, and Multilayer Perceptron, Support Vector Machine, and Random Forest ML techniques. For external validation, we used an independent cohort of 253 patients on MV ≥ 3 days with moderate/severe ARDS. Results: A total of 441 patients (48%) from the derivation cohort (n = 920) and 100 patients (40%) from the validation cohort (n = 253) were mechanically ventilated for >14 days [median 14 days (IQR 8-25) vs. 13 days (IQR 7-21), respectively]. The best early prediction model was obtained with data collected at 72 h after moderate/severe ARDS diagnosis. Multilayer Perceptron risk modeling identified major prognostic factors for the duration of MV > 14 days, including PaO2/FiO2, PaCO2, pH, and positive end-expiratory pressure. Predictions of the duration of MV > 14 days showed modest discrimination [AUC 0.71 (95%CI 0.65-0.76)]. Conclusions: Prolonged MV duration in moderate/severe ARDS patients remains difficult to predict early even with ML techniques such as Multilayer Perceptron and using data at 72 h of diagnosis. More research is needed to identify markers for predicting the length of MV. This study was registered on 14 August 2023 at ClinicalTrials.gov (NCT NCT05993377).

4.
Crit Care Explor ; 4(5): e0684, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35510152

RESUMO

OBJECTIVES: To establish the epidemiological characteristics, ventilator management, and outcomes in patients with acute hypoxemic respiratory failure (AHRF), with or without acute respiratory distress syndrome (ARDS), in the era of lung-protective mechanical ventilation (MV). DESIGN: A 6-month prospective, epidemiological, observational study. SETTING: A network of 22 multidisciplinary ICUs in Spain. PATIENTS: Consecutive mechanically ventilated patients with AHRF (defined as Pao2/Fio2 ≤ 300 mm Hg on positive end-expiratory pressure [PEEP] ≥ 5 cm H2O and Fio2 ≥ 0.3) and followed-up until hospital discharge. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Primary outcomes were prevalence of AHRF and ICU mortality. Secondary outcomes included prevalence of ARDS, ventilatory management, and use of adjunctive therapies. During the study period, 9,803 patients were admitted: 4,456 (45.5%) received MV, 1,271 (13%) met AHRF criteria (1,241 were included into the study: 333 [26.8%] met Berlin ARDS criteria and 908 [73.2%] did not). At baseline, tidal volume was 6.9 ± 1.1 mL/kg predicted body weight, PEEP 8.4 ± 3.1 cm H2O, Fio2 0.63 ± 0.22, and plateau pressure 21.5 ± 5.4 cm H2O. ARDS patients received higher Fio2 and PEEP than non-ARDS (0.75 ± 0.22 vs 0.59 ± 0.20 cm H2O and 10.3 ± 3.4 vs 7.7 ± 2.6 cm H2O, respectively [p < 0.0001]). Adjunctive therapies were rarely used in non-ARDS patients. Patients without ARDS had higher ventilator-free days than ARDS (12.2 ± 11.6 vs 9.3 ± 9.7 d; p < 0.001). All-cause ICU mortality was similar in AHRF with or without ARDS (34.8% [95% CI, 29.7-40.2] vs 35.5% [95% CI, 32.3-38.7]; p = 0.837). CONCLUSIONS: AHRF without ARDS is a very common syndrome in the ICU with a high mortality that requires specific studies into its epidemiology and ventilatory management. We found that the prevalence of ARDS was much lower than reported in recent observational studies.

5.
Intensive Care Med ; 46(12): 2327-2337, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32893313

RESUMO

PURPOSE: We hypothesized that neurally adjusted ventilatory assist (NAVA) compared to conventional lung-protective mechanical ventilation (MV) decreases duration of MV and mortality in patients with acute respiratory failure (ARF). METHODS: We carried out a multicenter, randomized, controlled trial in patients with ARF from several etiologies. Intubated patients ventilated for ≤ 5 days expected to require MV for ≥ 72 h and able to breathe spontaneously were eligible for enrollment. Eligible patients were randomly assigned based on balanced treatment assignments with a computerized randomization allocation sequence to two ventilatory strategies: (1) lung-protective MV (control group), and (2) lung-protective MV with NAVA (NAVA group). Allocation concealment was maintained at all sites during the trial. Primary outcome was the number of ventilator-free days (VFDs) at 28 days. Secondary outcome was all-cause hospital mortality. All analyses were done according to the intention-to-treat principle. RESULTS: Between March 2014 and October 2019, we enrolled 306 patients and randomly assigned 153 patients to the NAVA group and 153 to the control group. Median VFDs were higher in the NAVA than in the control group (22 vs. 18 days; between-group difference 4 days; 95% confidence interval [CI] 0 to 8 days; p = 0.016). At hospital discharge, 39 (25.5%) patients in the NAVA group and 47 (30.7%) patients in the control group had died (between-group difference - 5.2%, 95% CI - 15.2 to 4.8, p = 0.31). Other clinical, physiological or safety outcomes did not differ significantly between the trial groups. CONCLUSION: NAVA decreased duration of MV although it did not improve survival in ventilated patients with ARF.


Assuntos
Suporte Ventilatório Interativo , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Respiração Artificial , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia , Ventiladores Mecânicos
6.
J Neurosurg ; 128(5): 1538-1546, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28665250

RESUMO

OBJECTIVE In severe traumatic brain injury (TBI), the effects of decompressive craniectomy (DC) on brain tissue oxygen pressure (PbtO2) and outcome are unclear. The authors aimed to investigate whether changes in PbtO2 after DC could be used as an independent prognostic factor. METHODS The authors conducted a retrospective, observational study at 2 university hospital ICUs. The study included 42 patients who were admitted with isolated moderate or severe TBI and underwent intracranial pressure (ICP) and PbtO2 monitoring before and after DC. The indication for DC was an ICP higher than 25 mm Hg refractory to first-tier medical treatment. Patients who underwent primary DC for mass lesion evacuation were excluded. However, patients were included who had undergone previous surgery as long as it was not a craniectomy. ICP/PbtO2 monitoring probes were located in an apparently normal area of the most damaged hemisphere based on cranial CT scanning findings. PbtO2 values were routinely recorded hourly before and after DC, but for comparisons the authors used the first PbtO2 value on ICU admission and the number of hours with PbtO2 < 15 mm Hg before DC, as well as the mean PbtO2 every 6 hours during 24 hours pre- and post-DC. The end point of the study was the 6-month Glasgow Outcome Scale; a score of 4 or 5 was considered a favorable outcome, whereas a score of 1-3 was considered an unfavorable outcome. RESULTS Of the 42 patients included, 26 underwent unilateral DC and 16 bilateral DC. The median Glasgow Coma Scale score at the scene of the accident or at the initial hospital before the patient was transferred to one of the 2 ICUs was 7 (interquartile range [IQR] 4-14). The median time from admission to DC was 49 hours (IQR 7-301 hours). Before DC, the median ICP and PbtO2 at 6 hours were 35 mm Hg (IQR 28-51 mm Hg) and 11.4 mm Hg (IQR 3-26 mm Hg), respectively. In patients with favorable outcome, PbtO2 at ICU admission was higher and the percentage of time that pre-DC PbtO2 was < 15 mm Hg was lower (19 ± 4.5 mm Hg and 18.25% ± 21.9%, respectively; n = 28) than in those with unfavorable outcome (12.8 ± 5.2 mm Hg [p < 0.001] and 59.58% ± 38.8% [p < 0.001], respectively; n = 14). There were no significant differences in outcomes according to the mean PbtO2 values only during the last 12 hours before DC, the hours of refractory intracranial hypertension, the timing of DC from admission, or the presence/absence of previous surgery. In contrast, there were significant differences in PbtO2 values during the 12- to 24-hour period before DC. In most patients, PbtO2 increased during the 24 hours after DC but these changes were more pronounced in patients with favorable outcome than in those with unfavorable outcome (28.6 ± 8.5 mm Hg vs 17.2 ± 5.9 mm Hg, p < 0.0001; respectively). The areas under the curve for the mean PbtO2 values at 12 and 24 hours after DC were 0.878 (95% CI 0.75-1, p < 0.0001) and 0.865 (95% CI 0.73-1, p < 0.0001), respectively. CONCLUSIONS The authors' findings suggest that changes in PbtO2 before and after DC, measured with probes in healthy-appearing areas of the most damaged hemisphere, have independent prognostic value for the 6-month outcome in TBI patients.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/cirurgia , Encéfalo/metabolismo , Craniectomia Descompressiva , Pressão Intracraniana , Oxigênio/metabolismo , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Período Pré-Operatório , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
Trials ; 17(1): 500, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27737690

RESUMO

BACKGROUND: Patient-ventilator asynchrony is a common problem in mechanically ventilated patients with acute respiratory failure. It is assumed that asynchronies worsen lung function and prolong the duration of mechanical ventilation (MV). Neurally Adjusted Ventilatory Assist (NAVA) is a novel approach to MV based on neural respiratory center output that is able to trigger, cycle, and regulate the ventilatory cycle. We hypothesized that the use of NAVA compared to conventional lung-protective MV will result in a reduction of the duration of MV. It is further hypothesized that NAVA compared to conventional lung-protective MV will result in a decrease in the length of ICU and hospital stay, and mortality. METHODS/DESIGN: This is a prospective, multicenter, randomized controlled trial in 306 mechanically ventilated patients with acute respiratory failure from several etiologies. Only patients ventilated for less than 5 days, and who are expected to require prolonged MV for an additional 72 h or more and are able to breathe spontaneously, will be considered for enrollment. Eligible patients will be randomly allocated to two ventilatory arms: (1) conventional lung-protective MV (n = 153) and conventional lung-protective MV with NAVA (n = 153). Primary outcome is the number of ventilator-free days, defined as days alive and free from MV at day 28 after endotracheal intubation. Secondary outcomes are total length of MV, and ICU and hospital mortality. DISCUSSION: This is the first randomized clinical trial examining, on a multicenter scale, the beneficial effects of NAVA in reducing the dependency on MV of patients with acute respiratory failure. TRIAL REGISTRATION: ClinicalTrials.gov website ( NCT01730794 ). Registered on 15 November 2012.


Assuntos
Suporte Ventilatório Interativo/métodos , Pulmão/inervação , Centro Respiratório/fisiopatologia , Insuficiência Respiratória/terapia , Doença Aguda , Protocolos Clínicos , Mortalidade Hospitalar , Humanos , Suporte Ventilatório Interativo/efeitos adversos , Suporte Ventilatório Interativo/mortalidade , Tempo de Internação , Estudos Prospectivos , Recuperação de Função Fisiológica , Projetos de Pesquisa , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/mortalidade , Insuficiência Respiratória/fisiopatologia , Mecânica Respiratória , Fatores de Risco , Espanha , Fatores de Tempo , Resultado do Tratamento , Desmame do Respirador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA