Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679773

RESUMO

This work focuses on the use of ultrasound imaging to evaluate the cell concentration of dilute leukocyte suspensions in the range of 10-3000 cells/µL. First, numerical simulations were used to study the influence of the size dispersion and the leukocyte type on the performance of the concentration estimation algorithms, which were developed in previous works assuming single-sized scatterers. From this analysis, corrections to the mentioned algorithms were proposed and then the performance of these corrections was evaluated from experiments. For this, ultrasound images were captured from suspensions of lymphocytes, granulocytes, and their mixtures. These images were obtained using a 20 MHz single-channel scanning system. Results confirmed that concentration estimates provided by conventional algorithms were affected by the size dispersion of cells, leading to a remarkable underestimation of results. The proposed correction to compensate for cell size dispersion obtained from simulations improved the concentration estimation of these algorithms, for the cell suspensions tested, approaching the results to the reference optical characterization. Moreover, it was shown that these models provided a total leukocyte concentration from the ultrasound images which was independent of the relative populations of different white blood cell types.


Assuntos
Algoritmos , Leucócitos , Humanos , Suspensões , Ultrassonografia/métodos
2.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904889

RESUMO

Industrial robotic arms integrated with server computers, sensors and actuators have revolutionized the way automated non-destructive testing is performed in the aeronautical sector. Currently, there are commercial, industrial robots that have the precision, speed and repetitiveness in their movements that make them suitable for use in numerous non-destructive testing inspections. Automatic ultrasonic inspection of complex geometry parts remains one of the most difficult challenges in the market. The closed configuration, i.e., restricted access to internal motion parameters, of these robotic arms makes it difficult for an adequate synchronism between the movement of the robot and the acquisition of the data. This is a serious problem in the inspection of aerospace components, where high-quality images are necessary to assess the condition of the inspected component. In this paper, we applied a methodology recently patented for the generation of high-quality ultrasonic images of complex geometry pieces using industrial robots. The methodology is based on the calculation of a synchronism map after a calibration experiment and to introduce this corrected map in an autonomous, independent external system developed by the authors to obtain precise ultrasonic images. Therefore, it has been shown that it is possible to establish the synchronization of any industrial robot with any ultrasonic imaging generation system to generate high-quality ultrasonic images.

3.
Ultrasonics ; 116: 106501, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34147922

RESUMO

This work deals with the development of a methodology to evaluate the concentration in cell or particle suspensions from ultrasound images. The novelty of the method is based on two goals: first, it should be valid when the energy reaching the scatterers is unknown and cannot be measured or calibrated. In addition, it should be robust against echo overlap which may occur due to high scatterer concentration. Both characteristics are especially valuable in quantitative ultrasound analysis in the clinical context. In this regard, the present work considers the ability of envelope statistics models to characterize ultrasound images. Envelope statistical analysis are based on the examination of the physical properties of a medium through the study of the statistical distribution of the backscattered signal envelop. A review of the statistical distributions typically used to characterize scattering mediums was conducted. The main parameters of the distribution were estimated from simulations of signals backscattered by particle suspensions. Then, the ability of these parameters to characterize the suspension concentration was analyzed and the µ parameter from the Homodyned-K distribution resulted as the most suitable parameter for the task. Simulations were also used to study the impact of noise, signal amplitude variability and dispersion of particle sizes on the estimation method. The efficiency of the algorithm on experimental measurements was also evaluated. To this end, two sets of ultrasound images were obtained from suspensions of 7 µm and 12 µm polystyrene particles in water, using a 20 MHz focused transducer. The methodology proved to be efficient to quantify the concentration of particle suspensions in the range between 5 and 3000 particles/µl, achieving similar results for both particle sizes and for different signal-to-noise ratios.

4.
Ultrasound Med Biol ; 45(8): 2226-2241, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128769

RESUMO

This work presents an affordable and easily customizable methodology for phantom manufacturing, which can be used to mimic different anatomic organs and structures. This methodology is based on the use of polyvinyl alcohol-based cryogels as a physical substitute for biologic soft tissues and of 3-D printed polymers for hard tissues, moulding and supporting elements. Thin and durable soft-tissue mimicking layers and multilayer arrangements can be obtained using these materials. Special attention was paid to the acoustic properties (sound speed, attenuation coefficient and mechanical impedance) of the materials developed to simulate soft tissues. These properties were characterized as a function of the additives concentration (propylene-glycol and alumina particles). The polyvinyl alcohol formulation proposed in this work is stable over several freeze-thaw cycles, allowing the manufacturing of multilayer materials with controlled properties. The manufacturing methodology presented was applied to the development of a phantom for high-frequency cranial ultrasonography in infants. This phantom was able to reproduce the main characteristics of the ultrasound images obtained in neonates through the anterior fontanel, down to 8-mm depth.


Assuntos
Criogéis , Ecoencefalografia/métodos , Imagens de Fantasmas , Álcool de Polivinil , Impressão Tridimensional , Materiais Biomiméticos , Humanos , Recém-Nascido , Polímeros
5.
Artigo em Inglês | MEDLINE | ID: mdl-17036790

RESUMO

This work presents a novel method for digital ultrasound beamforming based on programmable table look-ups, in which vectors containing coded focusing information are efficiently stored, achieving an information density of a fraction of bit per acquired sample. Timing errors at the foci are within half the period of a master clock of arbitrarily high frequency to improve imaging quality with low resource requirements. The technique is applicable with conventional as well as with deltasigma converters. The bit-width of the focusing code and the number of samples per focus can be defined to improve both memory size and F# with controlled timing errors. In the static mode, the number of samples per focus is fixed, and in the dynamic approach that figure grows progressively, taking advantage of the increasing depth of focus. Furthermore, the latter has the lowest memory requirements. The technique is well suited for research purposes as well as for real-world applications, offering a degree of freedom not available with other approaches. It allows, for example, modifying the sampling instants to phase aberration correction, beamforming in layered structures, etc. The described modular and scalable prototype has been built using low-cost field programmable gate arrays (FPGAs). Experimental measurements are in good agreement with the theoretically expected errors.


Assuntos
Artefatos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Algoritmos , Desenho de Equipamento , Análise de Falha de Equipamento , Armazenamento e Recuperação da Informação/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador/instrumentação
6.
Artigo em Inglês | MEDLINE | ID: mdl-19473914

RESUMO

A new method for grating and side lobes suppression in ultrasound images is presented. It is based on an analysis of the phase diversity at the aperture data. Two coherence factors, namely the phase coherence factor (PCF) and the sign coherence factor (SCF), are proposed to weight the coherent sum output. Different from other approaches, phase rather than amplitude information is used to perform the correction action. Besides achieving the main goal, the method obtains improvements in lateral resolution and SNR. Implementation of the SCF technique is quite straightforward, operating in realtime, and can be added to any virtually existing beamformer to improve the resolution, contrast, SNR, and dynamic range of the images. A programmable parameter allows adjusting the sensitivity of the method to out-of-phase signals, from zero to a strict coherence criterion. The theoretical basis for the 2 methods are given and their performances evaluated by simulation. Then, experiments are conducted to provide results that are in good agreement with those expected from theory and simulation.


Assuntos
Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Algoritmos , Simulação por Computador , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA