Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22811, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129639

RESUMO

Plantar taping has been used in clinical settings as a short-term conservative treatment for plantar heel pain and related pathologies. The rise of at-home taping methods may offer patients more independence, but effectiveness has not been established. The purpose of this study was to evaluate the effects of plantar taping on foot mechanics during gait. We hypothesized that material compliance would drive mechanical effectiveness, with longitudinally inelastic tape reducing medial longitudinal arch (MLA) motion and anterior/posterior (A/P) plantar tissue spreading forces, and laterally inelastic tape reducing medial/lateral (M/L) tissue spreading. We also hypothesized that these effects would be influenced by foot structure. Fifteen healthy participants were tested in a randomized cross-over study design. Barefoot (BF) plus four taping methods were evaluated, including two inelastic tapes (Low-Dye, LD, and FasciaDerm, FD) along with longitudinally elastic kinesiology tape (KT) and a novel laterally elastic kinesiology tape (FAST, FS). Participants' arch height and flexibility were measured followed by instrumented gait analysis with a multi-segment foot model. Ankle eversion and MLA drop/rise were calculated from rearfoot and forefoot reference frames, while plantar tissue spreading was calculated from shear stresses. ANOVAs with Holm pairwise tests evaluated tape effects while correlations connected arch structure and taping effectiveness (α = 0.05). The three longitudinally inelastic tapes (LD, FD, FS) reduced MLA drop by 11-15% compared with KT and BF. In late stance, these tapes also inhibited MLA rise (LD by 29%, FD and FS by 10-15%). FS and FD reduced A/P spreading forces, while FD reduced M/L spreading forces compared with all other conditions. Arch height had a moderately strong correlation (r = -0.67) with the difference in MLA drop between BF and FS. At-home plantar taping can affect the mechanical function of the foot, but tape elasticity direction matters. Longitudinally elastic kinesiology tape has little effect on mechanics, while inelastic tapes control MLA drop but also restrict MLA rise in late stance. Lateral elasticity does not limit tissue spreading and may increase comfort without sacrificing MLA control. At-home taping has the potential to broaden conservative treatment of plantar heel pain, flat foot deformity, and related pathologies, but additional studies are needed to connect mechanics with symptom relief.


Assuntos
Fita Atlética , , Humanos , Elasticidade , Marcha , Dor , Estudos Cross-Over
2.
Med Eng Phys ; 108: 103890, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36195362

RESUMO

BACKGROUND: Orthopedic walker boots are often used to treat foot ulcers and other wounds with the goal of offloading plantar pressure. However, poor ulcer healing outcomes and high recurrence rates show a need for additional solutions in the growing diabetes epidemic. We compared a novel spring-loaded walker boot to a traditional rigid ankle boot and a hinged ankle boot as well as a control shoe. Our aim was to better understand how boot design affects offloading mechanisms. We hypothesized that all boots would offload force from the foot to the shank, but that the hinged boot would have fewer gait alterations and the spring boot would further reduce pressure in early and late stance. METHODS: Ten healthy participants tested each of the four conditions in static stance and walking gait. Offloading was quantified by the difference between pressure insole and platform forces, while joint mechanics changes were calculated from instrumented gait analysis and inverse dynamics. RESULTS: Minimal offloading was found in the rigid and hinged boots compared to athletic shoes. In contrast, the spring boot offloaded nearly 50% of total load in static stance, with similarly large reductions in peak pressures during gait, particularly under the hindfoot during early stance. All boots resulted in some ankle joint mechanics compensations, with the rigid and spring boots showing similar restrictions in ankle motion and propulsive work. While the hinged boot resulted in ankle mechanics more like the shoe condition, it increased dorsiflexion and negative work, suggesting energetic inefficiency. CONCLUSIONS: The novel spring boot shows promise for more effective offloading that could lead to improved healing outcomes.


Assuntos
Marcha , Sapatos , Tornozelo , Fenômenos Biomecânicos , , Humanos , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA