RESUMO
The plant defence inducer Actigard® (acibenzolar-S-methyl [ASM]) is applied before flowering and after fruit harvest to control bacterial canker in kiwifruit caused by Pseudomonas syringae pv. actinidiae. Pre-flowering application of ASM is known to upregulate defence gene expression; however, the effect of postharvest ASM on defence gene expression in the vine is unknown. In this study, the expression of eight "defence marker" genes was measured in the leaves of Actinidia chinensis var. chinensis, "Zesy002," and Actinidia chinensis var. deliciosa, "Hayward," vines after postharvest treatment with ASM and/or copper. There were two orchards per cultivar with harvest dates approximately three weeks apart for investigating potential changes in responsiveness to ASM during the harvest period. In all trials, postharvest ASM induced the expression of salicylic-acid-pathway defence genes PR1, PR2, PR5, BAD, DMR6, NIMIN2, and WRKY70. Gene upregulation was the greatest at 1 day and 7 days after treatment and declined to the control level after 3 weeks. In "Zesy002", the ASM-induced response was greater at the early harvest site than at the late harvest site. This decline was concomitant with leaf yellowing and a reduction in RNA yield. Effects of postharvest ASM on gene expression did not persist into the following spring, nor were vines conditioned to respond more strongly to pre-flowering ASM application.
RESUMO
Synthetic controls of crop pathogens are increasingly associated with harm to the environment and human health, and pathogen resistance. Pesticide residues in crops can also act as non-tariff trade barriers. There is therefore a strong imperative to develop biologically based and natural product (NP) biofungicides as more sustainable alternatives for crop pathogen control. We demonstrate the field efficacy, over multiple seasons, of NP biofungicides, NP1 (based on anhydrous milk fat) and NP2 (based on soybean oil), on two major diseases of winegrapes-Botrytis bunch rot (Botrytis) and powdery mildew (PM). The NPs were integrated into a season-long integrated disease management programme that has produced chemical-residue-free wines. Efficacies for Botrytis control on three different varieties were: 63-97% on Chardonnay, 0-96% for Sauvignon Blanc and 46-58% on Riesling; with 65-98% PM control on Chardonnay and Riesling. NP2 exhibited the significant control of Botrytis latent infections, making it a viable alternative to mid-season synthetic fungicides. Disease control was significantly better than the untreated control and usually as efficacious as the synthetic fungicide treatment(s). Yields and wine quality in NP-treated crops were normally equivalent to those in the synthetic fungicide treatments. The results indicate that NP-mediated disease control of Botrytis and powdery mildew can be obtained in the vineyard, without synthetic fungicide input.