Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(18): 10339-48, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23978035

RESUMO

The Flin Flon, Manitoba copper smelter was Canada's largest point source of mercury emissions until its closure in 2010 after ~80 years of operation. The objective of this study was to understand the variables controlling the local ground-level air mercury concentrations before and after this major point source reduction. Total gaseous mercury (TGM) in air, mercury in precipitation, and other ancillary meteorological and air quality parameters were measured pre- and postsmelter closure, and mercury speciation measurements in air were collected postclosure. The results showed that TGM was significantly elevated during the time period when the smelter operated (4.1 ± 3.7 ng m(-3)), decreased only 20% during the year following its closure, and remained ~2-fold above background levels. Similar trends were observed for mercury concentrations in precipitation. Several lines of evidence indicated that while smelter stack emissions would occasionally mix down to the surface resulting in large spikes in TGM concentrations (up to 61 ng m(-3)), the largest contributor to elevated TGM concentrations before and after smelter closure was from surface-air fluxes from mercury-enriched soils and/or tailings. These findings highlight the ability of legacy mercury, deposited to local landscapes over decades from industrial activities, to significantly affect local air concentrations via emissions/re-emissions.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Cobre , Monitoramento Ambiental , Manitoba , Metalurgia , Material Particulado/análise , Dióxido de Enxofre/análise
2.
Appl Opt ; 50(4): A90-9, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21283225

RESUMO

We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 µm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.


Assuntos
Atmosfera/análise , Benzeno/análise , Monitoramento Ambiental/instrumentação , Lasers , Análise Espectral/instrumentação , Tolueno/análise , Xilenos/análise , Benzeno/efeitos da radiação , Sistemas Computacionais , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Fotoquímica/instrumentação , Tolueno/efeitos da radiação , Xilenos/efeitos da radiação
3.
Appl Opt ; 49(6): 945-9, 2010 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-20174162

RESUMO

We demonstrate the application of a commercially available widely tunable continuous-wave external cavity quantum cascade laser as a spectroscopic source for the simultaneous detection of multiple gases. We measured broad absorption features of benzene and toluene between 1012 and 1063 cm(-1) (9.88 and 9.41 microm) at atmospheric pressure using an astigmatic Herriott multipass cell. Our results show experimental detection limits of 0.26 and 0.41 ppm for benzene and toluene, respectively, with a 100 m path length for these two gases.

4.
Sci Total Environ ; 586: 685-695, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238379

RESUMO

High-resolution records of anthropogenic mercury (Hg) deposition were constructed from 9 lakes located 5-75km from the Flin Flon, Manitoba smelter (formerly one of North America's largest atmospheric Hg point sources) and 5 lakes in Experimental Lakes Area (ELA), Ontario; a region remote from major Hg point sources. Anthropogenic Hg deposition, as both a flux and inventory, was determined after accounting for lake-specific natural Hg background concentrations, changes in sedimentation and sediment focusing. Results show that records of anthropogenic flux and inventory of Hg were remarkably consistent among the ELA lakes, but varied by 2 orders of magnitude among Flin Flon lakes. The relation between Hg inventories (normalized for prevailing wind direction) and distance from the smelter was used to estimate the total Hg fallout within a 50km radius in 5year time-steps, thus providing a quantitative spatial-temporal Hg depositional history for the Flin Flon region. The same relation solved for 8 cardinal directions weighted by the inverse of the previously applied wind direction normalization generates a map of Hg inventory and deposition on the landscape (Supplementary video). This novel application of sediment core data constructs a landscape model and allows for a visualization of contaminant deposition with respect to a point major source in both space and time. The propensity for Hg to undergo long-range, even global transport explains why Hg deposition within 50km of Flin Flon was ~11% of estimated releases. That is until smelter releases were reduced >10-fold (post-2000), after which observed deposition exceeded smelter releases, suggesting landscape re-emission/remobilization of legacy Hg is a major ongoing regional source of Hg.

5.
Sci Total Environ ; 568: 546-556, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26803218

RESUMO

This study examined the spatial and temporal trends of mercury (Hg) in wet deposition and air concentrations in the United States (U.S.) and Canada between 1997 and 2013. Data were obtained from the National Atmospheric Deposition Program (NADP) and Environment Canada monitoring networks, and other sources. Of the 19 sites with data records from 1997-2013, 53% had significant negative trends in Hg concentration in wet deposition, while no sites had significant positive trends, which is in general agreement with earlier studies that considered NADP data up until about 2010. However, for the time period 2007-2013 (71 sites), 17% and 13% of the sites had significant positive and negative trends, respectively, and for the time period 2008-2013 (81 sites) 30% and 6% of the sites had significant positive and negative trends, respectively. Non-significant positive tendencies were also widespread. Regional trend analyses revealed significant positive trends in Hg concentration in the Rocky Mountains, Plains, and Upper Midwest regions for the recent time periods in addition to significant positive trends in Hg deposition for the continent as a whole. Sulfate concentration trends in wet deposition were negative in all regions, suggesting a lower importance of local Hg sources. The trend in gaseous elemental Hg from short-term datasets merged as one continuous record was broadly consistent with trends in Hg concentration in wet deposition, with the early time period (1998-2007) producing a significantly negative trend (-1.5±0.2%year(-1)) and the recent time period (2008-2013) displaying a flat slope (-0.3±0.1%year(-1), not significant). The observed shift to more positive or less negative trends in Hg wet deposition primarily seen in the Central-Western regions is consistent with the effects of rising Hg emissions from regions outside the U.S. and Canada and the influence of long-range transport in the free troposphere.


Assuntos
Poluentes Atmosféricos/análise , Mercúrio/análise , Poluição do Ar/estatística & dados numéricos , Canadá , Monitoramento Ambiental , Estados Unidos
6.
J Phys Chem A ; 110(26): 8108-15, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805497

RESUMO

Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0.36), the rates are not as dependent on RH. The homogeneous nucleation rates for aqueous (NH(4))(2)SO(4) particles were parametrized using classical nucleation theory, and from this analysis we determined that the interfacial surface tension between the crystalline ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is between 0.053 and 0.070 J m(-2).

7.
J Phys Chem A ; 110(28): 8701-9, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16836431

RESUMO

Using optical microscopy, we investigated the crystallization of aqueous ammonium sulfate droplets containing soot and kaolinite, as well as the crystallization of aqueous ammonium sulfate droplets free of solid material. Our results show that soot did not influence the crystallization RH of aqueous ammonium sulfate particles under our experimental conditions. In contrast, kaolinite increased the crystallization RH of the aqueous ammonium sulfate droplets by approximately 10%. In addition, our results show that the crystallization RH of aqueous ammonium sulfate droplets free of solid material does not depend strongly on particle size. This is consistent with conclusions made previously in the literature, based on comparisons of results from different laboratories. From the crystallization results we determined the homogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate droplets and the heterogeneous nucleation rates of crystalline ammonium sulfate in aqueous ammonium sulfate particles containing kaolinite. Using classical nucleation theory and our experimental data, we determined that the interfacial tension between an ammonium sulfate critical nucleus and an aqueous ammonium sulfate solution is 0.064 +/- 0.003 J m(-2) (in agreement with our previous measurements), and the contact angle between an ammonium sulfate critical nucleus and a kaolinite surface is 59 +/- 2 degrees. On the basis of our results, we argue that soot will not influence the crystallization RH of aqueous ammonium sulfate droplets in the atmosphere, but kaolinite can significantly modify the crystallization RH of atmospheric ammonium sulfate droplets. As an example, the CRH50 (the relative humidity at which 50% of the droplets crystallize) ranges from about 41 to 51% RH when the diameter of the kaolinite inclusion ranges from 0.1 to 5 microm. For comparison, the CRH50 of aqueous ammonium sulfate droplets (0.5 microm diameter) free of solid material is approximately 34.3% RH under atmospheric conditions.

8.
J Chem Phys ; 123(23): 234504, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16392928

RESUMO

An experimental estimate of hydration number, N(H), of glycine in aqueous solution is given by using the calorimetric methodology developed by us earlier, which is briefly reviewed. We found NH to be 7+/-0.6 for glycine presumably in the zwitter ion form, 10+/-1 for sodium glycinate, and 5+/-0.4 for glycine hydrochloride. Both glycine and sodium glycinate seem to work purely as a hydration center without altering the nature of the bulk H2O away from the hydration shell. Glycine hydrochloride, in addition to the role of hydration center, seems also to act as a typical hydrophilic species such as polyols, urea, or polyethylene glycols. Hence, the effect of the latter on H2O is of a long range, like other hydrophilic species.


Assuntos
Físico-Química/métodos , Glicina/química , Água/química , Ligação de Hidrogênio , Íons , Modelos Moleculares , Estrutura Molecular , Polietilenoglicóis/química , Soluções , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA