Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 572(7768): 270-274, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31291642

RESUMO

Receptor kinases of the Catharanthus roseus RLK1-like (CrRLK1L) family have emerged as important regulators of plant reproduction, growth and responses to the environment1. Endogenous RAPID ALKALINIZATION FACTOR (RALF) peptides2 have previously been proposed as ligands for several members of the CrRLK1L family1. However, the mechanistic basis of this perception is unknown. Here we report that RALF23 induces a complex between the CrRLK1L FERONIA (FER) and LORELEI (LRE)-LIKE GLYCOSYLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED PROTEIN 1 (LLG1) to regulate immune signalling. Structural and biochemical data indicate that LLG1 (which is genetically important for RALF23 responses) and the related LLG2 directly bind RALF23 to nucleate the assembly of RALF23-LLG1-FER and RALF23-LLG2-FER heterocomplexes, respectively. A conserved N-terminal region of RALF23 is sufficient for the biochemical recognition of RALF23 by LLG1, LLG2 or LLG3, and binding assays suggest that other RALF peptides that share this conserved N-terminal region may be perceived by LLG proteins in a similar manner. Structural data also show that RALF23 recognition is governed by the conformationally flexible C-terminal sides of LLG1, LLG2 and LLG3. Our work reveals a mechanism of peptide perception in plants by GPI-anchored proteins that act together with a phylogenetically unrelated receptor kinase. This provides a molecular framework for understanding how diverse RALF peptides may regulate multiple processes, through perception by distinct heterocomplexes of CrRLK1L receptor kinases and GPI-anchored proteins of the LRE and LLG family.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfotransferases/metabolismo , Proteínas de Arabidopsis/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Modelos Moleculares , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fosfotransferases/genética , Maleabilidade , Ligação Proteica/genética , Conformação Proteica , Multimerização Proteica
2.
Nature ; 561(7722): E8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29973716

RESUMO

In this Letter, an incorrect version of the Supplementary Information file was inadvertently used, which contained several errors. The details of references 59-65 were missing from the end of the Supplementary Discussion section on page 4. In addition, the section 'Text 3. Y2H on ICD interactions' incorrectly referred to 'Extended Data Fig. 4d' instead of 'Extended Data Fig. 3d' on page 3. Finally, the section 'Text 4. Interaction network analysis' incorrectly referred to 'Fig. 1b and Extended Data Fig. 6' instead of 'Fig. 2b and Extended Data Fig. 7' on page 3. These errors have all been corrected in the Supplementary Information.

3.
Nature ; 553(7688): 342-346, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29320478

RESUMO

The cells of multicellular organisms receive extracellular signals using surface receptors. The extracellular domains (ECDs) of cell surface receptors function as interaction platforms, and as regulatory modules of receptor activation. Understanding how interactions between ECDs produce signal-competent receptor complexes is challenging because of their low biochemical tractability. In plants, the discovery of ECD interactions is complicated by the massive expansion of receptor families, which creates tremendous potential for changeover in receptor interactions. The largest of these families in Arabidopsis thaliana consists of 225 evolutionarily related leucine-rich repeat receptor kinases (LRR-RKs), which function in the sensing of microorganisms, cell expansion, stomata development and stem-cell maintenance. Although the principles that govern LRR-RK signalling activation are emerging, the systems-level organization of this family of proteins is unknown. Here, to address this, we investigated 40,000 potential ECD interactions using a sensitized high-throughput interaction assay, and produced an LRR-based cell surface interaction network (CSILRR) that consists of 567 interactions. To demonstrate the power of CSILRR for detecting biologically relevant interactions, we predicted and validated the functions of uncharacterized LRR-RKs in plant growth and immunity. In addition, we show that CSILRR operates as a unified regulatory network in which the LRR-RKs most crucial for its overall structure are required to prevent the aberrant signalling of receptors that are several network-steps away. Thus, plants have evolved LRR-RK networks to process extracellular signals into carefully balanced responses.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Leucina/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 116(17): 8525-8534, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948631

RESUMO

The rice immune receptor XA21 is activated by the sulfated microbial peptide required for activation of XA21-mediated immunity X (RaxX) produced by Xanthomonas oryzae pv. oryzae (Xoo). Mutational studies and targeted proteomics revealed that the RaxX precursor peptide (proRaxX) is processed and secreted by the protease/transporter RaxB, the function of which can be partially fulfilled by a noncognate peptidase-containing transporter component B (PctB). proRaxX is cleaved at a Gly-Gly motif, yielding a mature peptide that retains the necessary elements for RaxX function as an immunogen and host peptide hormone mimic. These results indicate that RaxX is a prokaryotic member of a previously unclassified and understudied group of eukaryotic tyrosine sulfated ribosomally synthesized, posttranslationally modified peptides (RiPPs). We further demonstrate that sulfated RaxX directly binds XA21 with high affinity. This work reveals a complete, previously uncharacterized biological process: bacterial RiPP biosynthesis, secretion, binding to a eukaryotic receptor, and triggering of a robust host immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Redes e Vias Metabólicas/genética , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeos/química , Peptídeos/genética , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/imunologia , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
5.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28264925

RESUMO

Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i-AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i-AAA protease in the regulation of mitochondrial biogenesis in plants.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metaloproteases/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Peso Molecular , Mutação/genética , Transporte Proteico , Proteólise
6.
Plant Physiol ; 171(4): 2516-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297677

RESUMO

FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metaloproteases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156584

RESUMO

Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Proteômica/métodos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Proteínas de Membrana Transportadoras/metabolismo , Metaloproteases/química , Mitocôndrias/química , Mitocôndrias/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Estresse Oxidativo , Ligação Proteica , Proteólise
8.
Sci Immunol ; 8(79): eabq7001, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608151

RESUMO

Flagellin, the protein subunit of the bacterial flagellum, stimulates the innate immune receptor Toll-like receptor 5 (TLR5) after pattern recognition or evades TLR5 through lack of recognition. This binary response fails to explain the weak agonism of flagellins from commensal bacteria, raising the question of how TLR5 response is tuned. Here, we screened abundant flagellins present in metagenomes from human gut for both TLR5 recognition and activation and uncovered a class of flagellin-TLR5 interaction termed silent recognition. Silent flagellins were weak TLR5 agonists despite pattern recognition. Receptor activity was tuned by a TLR5-flagellin interaction distal to the site of pattern recognition that was present in Salmonella flagellin but absent in silent flagellins. This interaction enabled flagellin binding to preformed TLR5 dimers and increased TLR5 signaling by several orders of magnitude. Silent recognition by TLR5 occurred in human organoids and mice, and silent flagellin proteins were present in human stool. These flagellins were produced primarily by the abundant gut bacteria Lachnospiraceae and were enriched in nonindustrialized populations. Our findings provide a mechanism for the innate immune system to tolerate commensal-derived flagellins while remaining vigilant to the presence of flagellins produced by pathogens.


Assuntos
Flagelina , Receptor 5 Toll-Like , Animais , Humanos , Camundongos , Bactérias , Flagelina/metabolismo , Transdução de Sinais , Intestinos
9.
Cell Host Microbe ; 29(4): 635-649.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713602

RESUMO

Immune systems restrict microbial pathogens by identifying "non-self" molecules called microbe-associated molecular patterns (MAMPs). It is unclear how immune responses are tuned to or by MAMP diversity present in commensal microbiota. We systematically studied the variability of commensal peptide derivatives of flagellin (flg22), a MAMP detected by plants. We define substantial functional diversity. Most flg22 peptides evade recognition, while others contribute to evasion by manipulating immunity through antagonism and signal modulation. We establish a paradigm of signal integration, wherein the sequential signaling outputs of the flagellin receptor are separable and allow for reprogramming by commensal-derived flg22 epitope variants. Plant-associated communities are enriched for immune evading flg22 epitopes, but upon physiological stress that represses the immune system, immune-activating flg22 epitopes become enriched. The existence of immune-manipulating epitopes suggests that they evolved to either communicate or utilize the immune system for host colonization and thus can influence commensal microbiota community composition.


Assuntos
Epitopos/imunologia , Flagelina/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Vegetal , Bactérias/genética , Imunidade , Microbiota , Peptídeos , Ralstonia , Simbiose
10.
Cell Host Microbe ; 29(4): 620-634.e9, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713601

RESUMO

Immune systems respond to "non-self" molecules termed microbe-associated molecular patterns (MAMPs). Microbial genes encoding MAMPs have adaptive functions and are thus evolutionarily conserved. In the presence of a host, these genes are maladaptive and drive antagonistic pleiotropy (AP) because they promote microbe elimination by activating immune responses. The role AP plays in balancing the functionality of MAMP-coding genes against their immunogenicity is unknown. To address this, we focused on an epitope of flagellin that triggers antibacterial immunity in plants. Flagellin is conserved because it enables motility. Here, we decode the immunogenic and motility profiles of this flagellin epitope and determine the spectrum of amino acid mutations that drives AP. We discover two synthetic mutational tracks that undermine the detection activities of a plant flagellin receptor. These tracks generate epitopes with either antagonist or weaker agonist activities. Finally, we find signatures of these tracks layered atop each other in natural Pseudomonads.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/imunologia , Epitopos/genética , Flagelina/genética , Imunidade , Doenças das Plantas
11.
Sci Data ; 6: 190025, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30806640

RESUMO

Plants use surface receptors to perceive information about many aspects of their local environment. These receptors physically interact to form both steady state and signalling competent complexes. The signalling events downstream of receptor activation impact both plant developmental and immune responses. Here, we present a comprehensive study of the physical interactions between the extracellular domains of leucine-rich repeat receptor kinases (LRR-RKs) in Arabidopsis. Using a sensitized assay, we tested reciprocal interactions among 200 of the 225 Arabidopsis LRR-RKs for a total search space of 40,000 interactions. Applying a stringent statistical cut-off and requiring that interactions performed well in both bait-prey and prey-bait orientations resulted in a high-confidence set of 567 bidirectional interactions. Additionally, we identified a total of 2,586 unidirectional interactions, which passed our stringent statistical cut-off in only one orientation. These datasets will guide further investigation into the regulatory roles of LRR-RKs in plant developmental and immune signalling decisions.


Assuntos
Proteínas de Arabidopsis , Mapeamento de Interação de Proteínas , Proteínas Quinases/química , Proteínas , Proteínas de Arabidopsis/química , Proteínas de Repetições Ricas em Leucina , Domínios Proteicos , Mapeamento de Interação de Proteínas/métodos , Proteínas Quinases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA