RESUMO
This paper studies the microstructure, composition and properties of a Al0.25CoCrFeNiV high entropy alloy coating (HEAC) deposited by laser cladding on austenitic-grade stainless steel. Laser cladding was carried out in an argon atmosphere on a FL-Clad-R-4 laser metal deposition complex with the following parameters: the laser power was 1400 W, the spot diameter was 3 mm, the track displacement was 1.2 mm, and the scanning speed was set to 10 mm/s. A change in the microstructure of the coating after laser cladding was revealed in comparison with as-cast high entropy alloy (HEA) Al0.25CoCrFeNiV. A significant decrease was found in the size of vanadium precipitates, from 20-40 µm in the as-cast state to 1-3 µm after laser cladding. A change in microhardness over the thickness of the coating from 370 HV0.3 at the outer surface to 270 HV0.3 at the boundary with the substrate was established, which may be due to the diffusion of Fe from the stainless steel into the coating material during laser cladding. Despite these features, the resulting coating adheres tightly to the substrate, and has no cracks or other defects, which indicates the possibility of using laser cladding to create coatings from high entropy alloys.
RESUMO
In this work, a new two-stage approach to the deposition of high-entropy alloy coatings is proposed. At the first stage, a composite precursor coating is formed by detonation spraying of the metal powder mixtures. At the second stage, the precursor coating is re-melted by a laser, and the formation of multi-component solid solution phases can be expected upon solidification. The feasibility of the proposed approach was validated using three different mixtures of Fe, Ni, Cu, Co and Al powders. It was shown that detonation spraying allows forming composite coatings with a uniform distribution of the lamellae of different metals. The results of the structural analysis of the laser-treated coatings suggest that complete alloying occurred in the melt and face-centered cubic solid solutions formed in the coatings upon cooling.
RESUMO
One of the methods of local improvement of the wear resistance of aluminum alloy parts is the deposition of hard tungsten carbide-based coatings on the surfaces subjected to intense external influence. This paper is devoted to the characterization of the WC-10Co-4Cr (wt.%) coating deposited on an Al-4Cu-1Mg (wt.%) alloy by the detonation spray method. In comparison with the common thermal spray techniques like High Velocity Oxygen Fuel (HVOF) or Atmospheric Plasma Spraying (APS), the heat input delivered to the substrate during detonation spray is significantly lower, that is especially important in case of coating deposition on aluminum alloys. The paper presents the results of morphology investigation, microstructure, phase composition, microhardness, and cohesive strength of deposited carbide-based detonation spray coating. Results showed that the coating has a porosity less than 0.5% and the carbide grain refinement down to the submicron size during coating deposition was detected. According to the investigation, the variation of spraying distance from 270 to 230 mm does not influence on the coating microstructure and composition.
RESUMO
The influence of laser power on the microstructural, strength, and tribological characteristics of aluminum bronze coatings applied to steel by laser cladding was studied. It was found that with an increase in laser power, the morphology of the coating surface becomes more uniform without extreme height differences. This study revealed that the coating microstructure corresponds to that of a composite material and consists of a bronze matrix and iron dendrites of different sizes (depending on the laser power). Such a microstructure affects the microhardness indices, which have a scatter of values over the coating thickness. There is a diffusion zone at the steel-bronze interface, which promotes adhesion of the matrix and coating materials. According to the results of tribological tests, the dry friction coefficient for the studied samples is in the range of 0.389-0.574.
RESUMO
Titanium alloy product manufacturing is traditionally considered to be a rather difficult task. Additive manufacturing technologies, which have recently become quite widespread, can ensure the manufacture of titanium alloys products of an arbitrary geometrical shape. During this study, we have developed a methodology for manufacturing titanium alloys products using additive technologies on FL-Clad-R-4 complex of laser melting of metals by combined Selective Laser Melting (SLM) and Direct Metal Deposition (DMD) methods. Ti-6Al-4V and Ti-6Al-4Mo-1V alloys were used for the manufacture of samples. We studied the microstructure of the obtained details and measured the microhardness of the samples. We discovered a gradient of the structure throughout the height of the details walls, which is connected with the peculiarities of thermal cycles of the technology used. This affected the microhardness values: in the upper part of the details, the microhardness is 10-25% higher (about 500 HV) than in the lower part (about 400 HV). Products made according to the developed technique do not have visible defects and pores. The obtained results indicate the competitiveness of the proposed methodology.