Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163952

RESUMO

The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0-40‱, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‱; however, quite high production (>390 IU/L) was still predicted at pH 4.5-8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0-120‱) and pHs (2.0-13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).


Assuntos
Quitinases/metabolismo , Hypocreales/enzimologia , Hypocreales/metabolismo , Biotecnologia , Quitina/química , Quitinases/isolamento & purificação , Extremófilos/isolamento & purificação , Extremófilos/metabolismo , Fermentação , Salinidade
2.
Molecules ; 28(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615508

RESUMO

Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones.


Assuntos
Polifenóis , Poluentes Químicos da Água , Humanos , Ecossistema , Biotecnologia , Reatores Biológicos , Água , Poluentes Químicos da Água/química
3.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801538

RESUMO

The "Saline di Tarquinia" salterns have been scarcely investigated regarding their microbiological aspects. This work studied the structure and composition of their bacterial communities along the salinity gradient (from the nearby sea through different ponds). The communities showed increasing simplification of pond bacterial diversity along the gradient (particularly if compared to those of the sea). Among the 38 assigned phyla, the most represented were Proteobacteria, Actinobacteria and Bacteroidetes. Differently to other marine salterns, where at the highest salinities Bacteroidetes dominated, preponderance of Proteobacteria was observed. At the genus level the most abundant taxa were Pontimonas, Marivita, Spiribacter, Bordetella, GpVII and Lentibacter. The α-diversity analysis showed that the communities were highly uneven, and the Canonical Correspondence Analysis indicated that they were structured by various factors (sampling site, sampling year, salinity, and sampling month). Moreover, the taxa abundance variation in relation to these significant parameters were investigated by Generalized Linear Models. This work represents the first investigation of a marine saltern, carried out by a metabarcoding approach, which permitted a broad vision of the bacterial diversity, covering both a wide temporal span (two years with monthly sampling) and the entire salinity gradient (from the nearby sea up to the crystallisation ponds).


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/análise , Filogenia , Salinidade , Água do Mar/microbiologia , Análise Espaço-Temporal , Microbiologia da Água , Bactérias/genética , DNA Bacteriano/genética
4.
Environ Microbiol ; 22(10): 4356-4366, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32337833

RESUMO

Vibrio species are ubiquitous in a number of different aquatic environments and promptly adapting to environmental changes due to high genome plasticity. The presence of these bacteria in marine salterns, in relation to a salinity gradient has been not investigated yet. Moreover, it is not clear if these hypersaline environments could represent a reservoir for Vibrio spp. This work investigated, through a metagenetic approach, the distribution of Vibrio (over 2 years) in different ponds along the salinity gradient within the 'Saline di Tarquinia' salterns, considering also the adjacent coastal waters and an isolated brine storage basin (BSB). Vibrio occurrence was higher in the sea than in the ponds and BSB, where it usually represented a rare taxon (abundance <1%). In the sea, it showed abundances in-between 1%-2.6% in 8 months out of 24. Four OTUs were assigned to the Vibrio genus; except for one that was more abundant in BSB, the others were much higher in the sea. Redundancy analysis (RDA) suggested a different distribution of the OTUs in relation to water temperature and salinity. Vibrio was found, even with low abundances, at the highest salinities also, suggesting the salterns as a possible reservoir for the bacterium.


Assuntos
Salinidade , Água do Mar/microbiologia , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo , Ecossistema , Itália , Lagoas , Vibrio/classificação , Vibrio/genética
5.
Microb Cell Fact ; 19(1): 184, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004054

RESUMO

BACKGROUND: Marine fungi are an important repository of bioactive molecules with great potential in different technological fields, the annual number of new compounds isolated from marine fungi is impressive and the general trend indicates that it is still on the rise. In this context, the antifungal and antimicrobial activity of the marine strain Mariannaea humicola IG100 was evaluated and two active terpenoids were isolated and characterized. METHODS: Preliminary screening of activity of marine strain IG100 was carried out by agar plug diffusion methods against fungal (Penicillium griseofulvum TSF04) and bacterial (Bacillus pumilus KB66 and Escherichia coli JM109) strains. Subsequently, inhibition tests were done by using the cultural broth and the organic extract (ethyl acetate, EtOAc) by the agar well diffusion methods. The main active fractions were identified and tested for their antifungal activity against P. griseofulvum TSF04 in a 24 wells microplate at different concentrations (1000, 100, 10 and 1.0 µg/mL). Two active compounds were characterized and their relative MIC measured by the broth micro-dilution methods in a 96-well microplate against Aspergillus flavus IG133, P. griseofulvum TSF04, and Trichoderma pleuroticola IG137. RESULTS: Marine strain IG100 presented significant antifungal activity associated with two active compounds, the terpenoids terperstacin 1 and 19-acetyl-4-hydroxydictyodiol 2. Their MIC values were measured for A. flavus (MIC of 7.9 µg/mL and 31.3 µg/mL for 1 and 2, respectively), P. griseofulvum (MIC of 25 µg/mL and 100 µg/mL for 1 and 2, respectively) and T. pleuroticola (MIC > 500 µg/mL and 125 µg/mL for 1 and 2, respectively). They showed a rather good fungistatic effect. CONCLUSIONS: In this study, the first marine strain of M. humicola (IG100) was investigated for the production of bioactive molecules. Strain IG100 produced significant amounts of two bioactive terpenoids, terperstacin 1 and 19-acetyl-4-hydroxydictyodiol 2. The two compounds showed significant antifungal activities against A. flavus IG133, T. pleuroticola IG137 and P. griseofulvum TSF04. Compound 2 was identified for the first time in fungi.


Assuntos
Alismatales/microbiologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Hypocreales/química , Terpenos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Aspergillus flavus/efeitos dos fármacos , Bacillus pumilus/efeitos dos fármacos , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/isolamento & purificação , Compostos Bicíclicos com Pontes/farmacologia , Cromatografia , Escherichia coli/efeitos dos fármacos , Hypocreales/efeitos dos fármacos , Hypocreales/genética , Testes de Sensibilidade Microbiana , Penicillium/efeitos dos fármacos , Filogenia , Terpenos/isolamento & purificação
6.
Molecules ; 24(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100818

RESUMO

Twenty-eight fungal strains have been isolated from different natural marine substrates and plate screened for their production of chitinolytic activity. The two apparent best producers, Trichoderma lixii IG127 and Clonostachys rosea IG119, were screened in shaken cultures in media containing 1% colloidal chitin, 1% yeast nitrogen base and 38‰ NaCl, for their ability to produce chitinolytic enzymes under halophilic conditions. In addition, they were tested for optimal growth conditions with respect to pH, salinity and temperature. The Trichoderma strain appeared to be a slight halotolerant fungus, while C. rosea IG119 clearly showed to be a halophilic marine fungus, its optimal growth conditions being very coherent for life in the marine environment (i.e., pH 8.0, salinity 38‰). Due to its high and relatively fast activity (258 U/L after 192 h of growth) accompanied by its halophilic behaviour (growth from 0 to 160‰ of salinity), C. rosea was selected for further studies. In view of possible industrial applications, its medium for chitinolytic enzyme production was optimized by Response Surface Methodology using 1% colloidal chitin and different concentrations of corn step liquor and yeast nitrogen base (0-0.5%). Time course of growth under optimized condition showed that maximum activity (394 U/L) was recorded after 120 h on medium containing Corn Steep Liquor 0.47% and Yeast Nitrogen Base 0.37%. Maximum of productivity (3.3 U/Lh) was recorded at the same incubation time. This was the first study that demonstrated high chitinolytic activity in a marine strain of C. rosea.


Assuntos
Organismos Aquáticos , Quitina/metabolismo , Hypocreales/metabolismo , Ativação Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Hypocreales/enzimologia , Nitrogênio/metabolismo , Salinidade , Temperatura
7.
J Fungi (Basel) ; 10(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38392799

RESUMO

In this study, 15 Lulworthiales strains isolated from the marine tunicate Halocynthia papillosa collected in the central Tyrrhenian Sea were characterized using a polyphasic approach (morpho-physiological, molecular, and phylogenetic analyses). Based on multi-locus phylogenetic inference and morphological characters, a new genus, Rambellisea, and two new species, R. halocynthiae and R. gigliensis (Lulworthiales), were proposed. Multi-locus phylogenetic analyses using the nuclear ribosomal regions of DNA (nrITS1-nr5.8S-nrITS2, nrLSU, and nrSSU) sequence data strongly supported the new taxa. Phylogenetic inference, estimated using Maximum Likelihood and Bayesian Inference, clearly indicates that Rambellisea gen. nov. forms a distinct clade within the order Lulworthiales. Moreover, the two new species were separated into distinct subclades, solidly supported by the analyses. This is the first report of Lulworthiales species isolated from animals.

8.
Environ Microbiome ; 18(1): 67, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533108

RESUMO

BACKGROUND: The Kuril-Kamchatka Trench (maximum depth 9604 m), located in the NW Pacific Ocean, is among the top seven deepest hadal trenches. The work aimed to investigate the unexplored abyssal-hadal prokaryotic communities of this fascinating, but underrated environment. RESULTS: As for the bacterial communities, we found that Proteobacteria (56.1-74.5%), Bacteroidetes (6.5-19.1%), and Actinobacteria (0.9-16.1%) were the most represented bacterial phyla over all samples. Thaumarchaeota (52.9-91.1%) was the most abundant phylum in the archaeal communities. The archaeal diversity was highly represented by the ammonia-oxidizing Nitrosopumilus, and the potential hydrocarbon-degrading bacteria Acinetobacter, Zhongshania, and Colwellia were the main bacterial genera. The α-diversity analysis evidenced that both prokaryotic communities were characterized by low evenness, as indicated by the high Gini index values (> 0.9). The ß-diversity analysis (Redundancy Analysis) indicated that, as expected, the depth significantly affected the structure of the prokaryotic communities. The co-occurrence network revealed seven prokaryotic groups that covaried across the abyssal-hadal zone of the Kuril-Kamchatka Trench. Among them, the main group included the most abundant archaeal and bacterial OTUs (Nitrosopumilus OTU A2 and OTU A1; Acinetobacter OTU B1), which were ubiquitous across the trench. CONCLUSIONS: This manuscript represents the first attempt to characterize the prokaryotic communities of the KKT abyssal-hadal zone. Our results reveal that the most abundant prokaryotes harbored by the abyssal-hadal zone of Kuril-Kamchatka Trench were chemolithotrophic archaea and heterotrophic bacteria, which did not show a distinctive pattern distribution according to depth. In particular, Acinetobacter, Zhongshania, and Colwellia (potential hydrocarbon degraders) were the main bacterial genera, and Nitrosopumilus (ammonia oxidizer) was the dominant representative of the archaeal diversity.

9.
Microorganisms ; 10(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456840

RESUMO

Pontimonas is currently described as a genus including only one species of slightly halophilic marine bacteria. Although some works revealed its presence in some hypersaline environments, the information on its habitat preference is still scant. This work investigated Pontimonas presence in selected ponds of the Saline di Tarquinia marine saltern and in the seawater intake area. The two-year metabarcoding survey documented its constant presence along the ponds establishing the salinity gradient and in a distinct basin with permanent hypersaline conditions (BSB). Pontimonas was higher in the ponds than in the sea, whereas it had similar abundances in the sea and in the BSB. Its representative OTUs showed significant trends according to different parameters. Along the salinity gradient, OTU1 abundance increased with decreasing water temperatures and increasing rainfalls, and it showed a maximum in January; OTU2 increased with increasing BOD5 and it showed the highest abundances in the period August-October, and OTU 3194 increased at decreasing salinities. In BSB, a significant seasonal variation was shown by OTU 3194, which started increasing in spring to reach a maximum in summer. The results suggest that Pontimonas could easily settle in hypersaline habitats, having also broad euryhaline members and some possible extreme halophilic representatives.

10.
Microorganisms ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422310

RESUMO

Tomatoes are among the most consumed vegetables worldwide and represent a source of health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming systems. Proteobacteria was the dominant phylum (relative abundances 79-91%) in all experimental conditions. Enterobacteriaceae represented a large fraction (39.3-47.5%) of the communities, with Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of 59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occurrence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella), OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a high similarity between the bacterial communities of red and purple tomatoes grown under organic farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming showed the lowest diversity and evenness. This work paves the way to understand the role of nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.

11.
PLoS One ; 11(3): e0151137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028195

RESUMO

Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution.


Assuntos
Clorófitas/genética , Microalgas/genética , Clorófitas/classificação , Clorófitas/ultraestrutura , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Microalgas/classificação , Microalgas/ultraestrutura , Filogenia , Análise de Sequência de DNA
12.
FEMS Microbiol Ecol ; 81(3): 547-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22469019

RESUMO

Truffles are hypogeous ectomycorrhizal (EM) fungi belonging to the genus Tuber. Although outplanting of truffle-inoculated host plants has enabled the realization of productive orchards, truffle cultivation is not yet standardized. Therefore, monitoring the distribution of fungal species in different truffle fields may help us to elucidate the factors that shape microbial communities and influence the propagation and fruiting of Tuber spp. In this study, we compared the fungal biodiversity in cultivated and natural Tuber melanosporum truffle fields located in Central Italy. To this end, ectomycorrhizas (ECM) and soil samples were molecularly analyzed, and an inventory of the fungi associated with Quercus pubescens plants colonized by T. melanosporum, Tuber aestivum or Tuber brumale was compiled. T. melanosporum and T. aestivum were dominant on the cultivated plants, and the number of EM species was markedly lower in the cultivated sites than in the natural sites. However, in the same site, EM biodiversity was higher in T. brumale-colonized plants than in T. melanosporum-colonized plants. These results suggest that different Tuber spp. may have different competitive effects on the other mycobionts. Additionally, in keeping with our previous findings, we found that the number of T. melanosporum genotypes recovered from the soil samples was higher than that of the underlying ECM.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Micorrizas/classificação , Micorrizas/isolamento & purificação , Quercus/microbiologia , Microbiologia do Solo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Biodiversidade , Técnicas de Cultura , Itália , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento
13.
Mycol Res ; 108(Pt 3): 325-36, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15185983

RESUMO

Fungal colonies sporulating on 71 kinds of leaves that fell during the dry season in the Tai National Park (Ivory Coast) were analysed. A consistent connection between certain fungal species and their substrata was detected among the 184 fungal species that were identified. Each fungal species was characterized according to morphological and ecological features. Multidimensional scaling showed that certain ubiquitous and common species have morphological characters distinguishing them from specialised species.


Assuntos
Ecossistema , Fungos/classificação , Folhas de Planta/microbiologia , Árvores , Clima Tropical , Côte d'Ivoire , Fungos/isolamento & purificação , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA