RESUMO
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/psicologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Locus Cerúleo , Teorema de BayesRESUMO
Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from preclinical to clinical models of pathology and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations such as EEG and magnetoencephalography. Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by 11C-UCB-J PET, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson's syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild cortical atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using parametric empirical Bayesian inversion of a conductance-based canonical microcircuit model of magnetoencephalography data, we show that the inclusion of regional synaptic density-as a subject-specific prior on laminar-specific neuronal populations-markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology.
Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/patologia , Teorema de Bayes , Disfunção Cognitiva/complicações , Atrofia/complicaçõesRESUMO
Frontotemporal dementia is clinically and neuropathologically heterogeneous, but neuroinflammation, atrophy and cognitive impairment occur in all of its principal syndromes. Across the clinical spectrum of frontotemporal dementia, we assess the predictive value of in vivo neuroimaging measures of microglial activation and grey-matter volume on the rate of future cognitive decline. We hypothesized that inflammation is detrimental to cognitive performance, in addition to the effect of atrophy. Thirty patients with a clinical diagnosis of frontotemporal dementia underwent a baseline multimodal imaging assessment, including [11C]PK11195 PET to index microglial activation and structural MRI to quantify grey-matter volume. Ten people had behavioural variant frontotemporal dementia, 10 had the semantic variant of primary progressive aphasia and 10 had the non-fluent agrammatic variant of primary progressive aphasia. Cognition was assessed at baseline and longitudinally with the revised Addenbrooke's Cognitive Examination, at an average of 7-month intervals (for an average of â¼2 years, up to â¼5 years). Regional [11C]PK11195 binding potential and grey-matter volume were determined, and these were averaged within four hypothesis-driven regions of interest: bilateral frontal and temporal lobes. Linear mixed-effect models were applied to the longitudinal cognitive test scores, with [11C]PK11195 binding potentials and grey-matter volumes as predictors of cognitive performance, with age, education and baseline cognitive performance as covariates. Faster cognitive decline was associated with reduced baseline grey-matter volume and increased microglial activation in frontal regions, bilaterally. In frontal regions, microglial activation and grey-matter volume were negatively correlated, but provided independent information, with inflammation the stronger predictor of the rate of cognitive decline. When clinical diagnosis was included as a factor in the models, a significant predictive effect was found for [11C]PK11195 BPND in the left frontal lobe (-0.70, P = 0.01), but not for grey-matter volumes (P > 0.05), suggesting that inflammation severity in this region relates to cognitive decline regardless of clinical variant. The main results were validated by two-step prediction frequentist and Bayesian estimation of correlations, showing significant associations between the estimated rate of cognitive change (slope) and baseline microglial activation in the frontal lobe. These findings support preclinical models in which neuroinflammation (by microglial activation) accelerates the neurodegenerative disease trajectory. We highlight the potential for immunomodulatory treatment strategies in frontotemporal dementia, in which measures of microglial activation may also improve stratification for clinical trials.
Assuntos
Afasia Primária Progressiva , Disfunção Cognitiva , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Demência Frontotemporal/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Microglia/metabolismo , Teorema de Bayes , Lobo Frontal/patologia , Doença de Pick/patologia , Disfunção Cognitiva/metabolismo , Imageamento por Ressonância Magnética/métodos , Inflamação/patologia , Atrofia/patologia , Afasia Primária Progressiva/patologiaRESUMO
BACKGROUND: Previous studies have reported brain structure abnormalities in conduct disorder (CD), but it is unclear whether these neuroanatomical alterations mediate the effects of familial (genetic and environmental) risk for CD. We investigated brain structure in adolescents with CD and their unaffected relatives (URs) to identify neuroanatomical markers of familial risk for CD. METHODS: Forty-one adolescents with CD, 24 URs of CD probands, and 38 healthy controls (aged 12-18), underwent structural magnetic resonance imaging. We performed surface-based morphometry analyses, testing for group differences in cortical volume, thickness, surface area, and folding. We also assessed the volume of key subcortical structures. RESULTS: The CD and UR groups both displayed structural alterations (lower surface area and folding) in left inferior parietal cortex compared with controls. In contrast, CD participants showed lower insula and pars opercularis volume than controls, and lower surface area and folding in these regions than controls and URs. The URs showed greater folding in rostral anterior cingulate and inferior temporal cortex than controls and greater medial orbitofrontal folding than CD participants. The surface area and volume differences were not significant when controlling for attention-deficit/hyperactivity disorder comorbidity. There were no group differences in subcortical volumes. CONCLUSIONS: These findings suggest that alterations in inferior parietal cortical structure partly mediate the effects of familial risk for CD. These structural changes merit investigation as candidate endophenotypes for CD. Neuroanatomical changes in medial orbitofrontal and anterior cingulate cortex differentiated between URs and the other groups, potentially reflecting neural mechanisms of resilience to CD.
Assuntos
Transtorno da Conduta , Humanos , Adolescente , Transtorno da Conduta/diagnóstico por imagem , Predisposição Genética para Doença , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia , Lobo Temporal/patologia , Imageamento por Ressonância Magnética/métodosRESUMO
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Assuntos
Apatia , Doença de Parkinson , Cloridrato de Atomoxetina/farmacologia , Estudos Cross-Over , Humanos , Norepinefrina , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológicoRESUMO
The relationship between in vivo synaptic density and molecular pathology in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology in the primary tauopathies of progressive supranuclear palsy and corticobasal degeneration as a function of disease severity. Twenty-three patients with progressive supranuclear palsy and 12 patients with corticobasal syndrome were recruited from a tertiary referral centre. Nineteen education-, sex- and gender-matched control participants were recruited from the National Institute for Health Research 'Join Dementia Research' platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands 11C-UCB-J and 18F-AV-1451, respectively. Patients with corticobasal syndrome also underwent amyloid PET imaging with 11C-PiB to exclude those with likely Alzheimer's pathology-we refer to the amyloid-negative cohort as having corticobasal degeneration, although we acknowledge other underlying pathologies exist. Disease severity was assessed with the progressive supranuclear palsy rating scale; regional non-displaceable binding potentials of 11C-UCB-J and 18F-AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for 18F-AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between 11C-UCB-J and 18F-AV-1451 non-displaceable binding potentials (ß = 0.4, t = 3.6, P = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (ß = -0.02, t = -2.9, P = 0.007, R = -0.41). Between regions, cortical 18F-AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher 18F-AV-1451 binding in progressive supranuclear palsy/corticobasal degeneration, but this association diminishes with disease severity. Moreover, higher cortical 18F-AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse-rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to the molecular pathology. Given the importance of synaptic function for cognition and action, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.
Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Doença de Alzheimer/patologia , Encéfalo/patologia , Carbolinas , Radioisótopos de Carbono/metabolismo , Estudos Transversais , Humanos , Patologia Molecular , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Pirrolidinonas , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismoRESUMO
BACKGROUND: Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES: This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS: Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS: PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (ß = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (ß = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS: The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Locus Cerúleo , Transtornos Parkinsonianos , Apatia/fisiologia , Cognição/fisiologia , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/fisiopatologiaRESUMO
BACKGROUND AND PURPOSE: Although disabling fatigue is common in Parkinson disease (PD), available consensus-based diagnostic criteria have not yet been empirically validated. The aim of this study was to evaluate the clinimetric properties of the criteria. METHODS: A sample of outpatients with PD was evaluated for demographic, clinical, behavioral, and cognitive features. Fatigue was diagnosed according to the new diagnostic criteria and was rated by means of the Parkinson Fatigue Scale (PFS) and Fatigue Severity Scale (FSS). Acceptability, concurrent and discriminant validity, and interrater reliability were evaluated with binary logistic regression analyses and Cohen kappa (κ). RESULTS: Of 241 included patients, 17 (7.1%) met the diagnostic criteria for PD-related fatigue. Eight of nine symptoms described in Section A of the diagnostic criteria occurred in >50% of patients with fatigue. Acceptability (missing data = 0.8%) of the criteria was good, as was their concurrent validity with the PFS (odds ratio = 3.65) and FSS (odds ratio = 3.63). The discriminant validity of fatigue criteria with other PD-related behavioral and cognitive features was good (odds ratio < 1.68). The interrater reliability was excellent (κ = 0.92). CONCLUSIONS: This is the first study to test the clinimetric properties of case definition diagnostic criteria for PD-related fatigue. Our results suggest that current diagnostic criteria may be useful in both clinical practice and research. Future longitudinal studies should examine their long-term stability.
Assuntos
Doença de Parkinson , Fadiga/diagnóstico , Fadiga/etiologia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Reprodutibilidade dos Testes , Índice de Gravidade de DoençaRESUMO
Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.
Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Cloridrato de Atomoxetina/farmacologia , Inibição Psicológica , Locus Cerúleo/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Idoso , Método Duplo-Cego , Feminino , Humanos , Locus Cerúleo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/efeitos dos fármacosRESUMO
The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients' GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials.
Assuntos
Córtex Cerebral/fisiopatologia , Demência Frontotemporal/fisiopatologia , Modelos Neurológicos , Paralisia Supranuclear Progressiva/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Idoso , Córtex Cerebral/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Demência Frontotemporal/tratamento farmacológico , Inibidores da Captação de GABA/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Magnetoencefalografia , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Paralisia Supranuclear Progressiva/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tiagabina/uso terapêuticoRESUMO
To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain.
Assuntos
Córtex Auditivo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Modelos Neurológicos , Rede Nervosa/diagnóstico por imagem , Neurônios/fisiologia , Idoso , Córtex Auditivo/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Lobo Frontal/efeitos dos fármacos , Inibidores da Captação de GABA/farmacologia , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tiagabina/farmacologiaRESUMO
Early and profound pathological changes are evident in the locus coeruleus (LC) in dementia and Parkinson's disease, with effects on arousal, attention, cognitive and motor control. The LC can be identified in vivo using non-invasive magnetic resonance imaging techniques which have potential as biomarkers for detecting and monitoring disease progression. Technical limitations of existing imaging protocols have impaired the sensitivity to regional contrast variance or the spatial variability on the rostrocaudal extent of the LC, with spatial mapping consistent with post mortem findings. The current study employs a sensitive magnetisation transfer sequence using ultrahigh field 7T MRI to investigate the LC structure in vivo at high-resolution (0.4 × 0.4 × 0.5 mm). Magnetisation transfer images from 53 healthy older volunteers (52 - 84 years) clearly revealed the spatial features of the LC and were used to create a probabilistic LC atlas for older adults. This atlas may be especially relevant for studying disorders associated with older age. To use the atlas does not require use of the same MT sequence of 7T MRI, provided good co-registration and normalisation is achieved. Consistent rostrocaudal gradients of slice-wise volume, contrast and variance along the LC were observed, mirroring distinctive ex vivo spatial distributions of LC cells in its subregions. The contrast-to-noise ratios were calculated for the peak voxels, and for the averaged signals within the atlas, to accommodate the volumetric differences in estimated contrast. The probabilistic atlas is freely available, and the MRI dataset will be made available for non-commercial research, for replication or to facilitate accurate LC localisation and unbiased contrast extraction in future studies.
Assuntos
Locus Cerúleo/anatomia & histologia , Locus Cerúleo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: We examined the relationship between tau pathology and neuroinflammation using [11 C]PK11195 and [18 F]AV-1451 PET in 17 patients with progressive supranuclear palsy (PSP) Richardson's syndrome. We tested the hypothesis that neuroinflammation and tau protein aggregation colocalize macroscopically, and correlate with clinical severity. METHODS: Nondisplaceable binding potential (BPND ) for each ligand was quantified in 83 regions of interest (ROIs). The [11 C]PK11195 and [18 F]AV-1451 BPND values were correlated across all regions. The spatial distributions of [11 C]PK11195 and [18 F]AV-1451 binding were determined by principal component analyses (PCAs), and the loading of each spatial component compared against the patients' clinical severity (using the PSP rating scale). RESULTS: Regional [11 C]PK11195 and [18 F]AV-1451 binding were positively correlated (R = 0.577, p < 0.0001). The PCA identified 4 components for each ligand, reflecting the relative expression of tau pathology or neuroinflammation in distinct groups of brain regions. Positive associations between [11 C]PK11195 and [18 F]AV-1451 components' loadings were found in both subcortical (R = 0.769, p < 0.0001) and cortical regions (R = 0.836, p < 0.0001). There were positive correlations between clinical severity and both subcortical tau pathology (R = 0.667, p = 0.003) and neuroinflammation (R = 0.788, p < 0.001). INTERPRETATION: We show that tau pathology and neuroinflammation colocalize in PSP, and that individual differences in subcortical tau pathology and neuroinflammation are linked to clinical severity. Although longitudinal studies are needed to determine causal associations between these molecular pathologies, we suggest that the combination of tau- and immune-oriented strategies may be useful for effective disease-modifying treatments in PSP. ANN NEUROL 2020;88:1194-1204.
Assuntos
Encéfalo/metabolismo , Carbolinas/metabolismo , Isoquinolinas/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/metabolismo , Idoso , Radioisótopos de Carbono , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tomografia por Emissão de Pósitrons , Índice de Gravidade de DoençaRESUMO
INTRODUCTION: In addition to tau pathology and neuronal loss, neuroinflammation occurs in progressive supranuclear palsy (PSP). However, the prognostic value of the in vivo imaging markers for these processes in PSP remains unclear. We test the primary hypothesis that baseline in vivo imaging assessment of neuroinflammation in subcortical regions predicts clinical progression in patients with PSP. METHODS: Seventeen patients with PSP-Richardson's syndrome underwent a baseline multimodal imaging assessment, including [11C]PK11195 positron emission tomography (PET) to index microglial activation, [18F]AV-1451 PET for tau pathology and structural MRI. Disease severity was measured at baseline and serially up to 4 years with the Progressive Supranuclear Palsy Rating Scale (PSPRS) (average interval of 5 months). Regional grey-matter volumes and PET ligand binding potentials were summarised by three principal component analyses (PCAs). A linear mixed-effects model was applied to the longitudinal PSPRS scores. Single-modality imaging predictors were regressed against the individuals' estimated rate of progression to identify the prognostic value of baseline imaging markers. RESULTS: PCA components reflecting neuroinflammation and tau burden in the brainstem and cerebellum correlated with the subsequent annual rate of change in the PSPRS. PCA-derived PET markers of neuroinflammation and tau pathology correlated with regional brain volume in the same regions. However, MRI volumes alone did not predict the rate of clinical progression. CONCLUSIONS: Molecular imaging with PET for microglial activation and tau pathology can predict clinical progression in PSP. These data encourage the evaluation of immunomodulatory approaches to disease-modifying therapies in PSP and the potential for PET to stratify patients in early phase clinical trials.
Assuntos
Encéfalo/patologia , Encefalite/patologia , Paralisia Supranuclear Progressiva/patologia , Idoso , Encéfalo/diagnóstico por imagem , Progressão da Doença , Encefalite/diagnóstico por imagem , Encefalite/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Prognóstico , Índice de Gravidade de Doença , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/metabolismoRESUMO
INTRODUCTION: We report in vivo patterns of neuroinflammation and abnormal protein aggregation in seven cases of familial frontotemporal dementia (FTD) with mutations in MAPT, GRN and C9orf72 genes. METHODS: Using positron emission tomography (PET), we explored the association of the distribution of activated microglia, as measured by the radioligand [11C]PK11195, and the regional distribution of tau or TDP-43 pathology, indexed using the radioligand [18F]AV-1451. The familial FTD PET data were compared with healthy controls. RESULTS: Patients with familial FTD across all mutation groups showed increased [11C]PK11195 binding predominantly in frontotemporal regions, with additional regions showing abnormalities in individuals. Patients with MAPT mutations had a consistent distribution of [18F]AV-1451 binding across the brain, with heterogeneous distributions among carriers of GRN and C9orf72 mutations. DISCUSSION: This case series suggests that neuroinflammation is part of the pathophysiology of familial FTD, warranting further consideration of immunomodulatory therapies for disease modification and prevention.
Assuntos
Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Idoso , Proteína C9orf72/genética , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Progranulinas/genética , Proteínas tau/genéticaRESUMO
BACKGROUND: Neuroticism is linked to mood disorders and Alzheimer's disease, but fewer studies have tested the prospective association with Parkinson's disease (PD). OBJECTIVES: To examine the association between neuroticism and risk of PD in a large cohort and a meta-analysis of prospective cohort studies. METHODS: Participants from the UK Biobank (N = 490,755) completed a neuroticism scale in 2006-2010. Incident PD was ascertained using electronic health records or death records up to 2018. The systematic search and meta-analysis followed the MOOSE guidelines. RESULTS: During 11.91 years of follow-up (mean = 8.88 years; 4,360,105 person-years) 1142 incident PD cases were identified. Neuroticism was associated with higher risk of incident PD, both as continuous (HR = 1.28; 95% CI: 1.21-1.36) and categorical variable (top vs. bottom quartiles: HR = 1.88; 95% CI: 1.60-2.22). The association remained significant after accounting for age, sex, smoking, physical activity, anxiety, and depressed mood, and after excluding cases that occurred within the first 5 years of follow-up. The associations were similar for women and men and across levels of socioeconomic status. Random-effect meta-analysis of four prospective studies (N = 548,284) found neuroticism associated with increased risk of incident PD (HR = 1.82; 95% CI: 1.59-2.08; P = 7.31-19 ). There was no evidence of heterogeneity across studies with follow-ups ranging from one to four decades. CONCLUSION: The results from the large UK Biobank and meta-analysis of prospective studies indicate that neuroticism is consistently associated with a higher risk of incident PD. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Doença de Alzheimer , Doença de Parkinson , Estudos de Coortes , Humanos , Neuroticismo , Doença de Parkinson/epidemiologia , Estudos Prospectivos , Fatores de RiscoRESUMO
Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer's disease. Understanding whether these features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neuroinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cognitive changes in patients with Alzheimer's disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer's dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assessment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 years using the revised Addenbrooke's Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer's disease pathology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate of annual decline in each participant. We regressed the individuals' estimated rate of cognitive decline on the neuroimaging components and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to identify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived atrophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptomatic Alzheimer's disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer's disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting tau and neuroinflammation in disease-modifying therapy against Alzheimer's disease.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Microglia/patologia , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodosRESUMO
The clinical syndromes of frontotemporal dementia are clinically and neuropathologically heterogeneous, but processes such as neuroinflammation may be common across the disease spectrum. We investigated how neuroinflammation relates to the localization of tau and TDP-43 pathology, and to the heterogeneity of clinical disease. We used PET in vivo with (i) 11C-PK-11195, a marker of activated microglia and a proxy index of neuroinflammation; and (ii) 18F-AV-1451, a radioligand with increased binding to pathologically affected regions in tauopathies and TDP-43-related disease, and which is used as a surrogate marker of non-amyloid-ß protein aggregation. We assessed 31 patients with frontotemporal dementia (10 with behavioural variant, 11 with the semantic variant and 10 with the non-fluent variant), 28 of whom underwent both 18F-AV-1451 and 11C-PK-11195 PET, and matched control subjects (14 for 18F-AV-1451 and 15 for 11C-PK-11195). We used a univariate region of interest analysis, a paired correlation analysis of the regional relationship between binding distributions of the two ligands, a principal component analysis of the spatial distributions of binding, and a multivariate analysis of the distribution of binding that explicitly controls for individual differences in ligand affinity for TDP-43 and different tau isoforms. We found significant group-wise differences in 11C-PK-11195 binding between each patient group and controls in frontotemporal regions, in both a regions-of-interest analysis and in the comparison of principal spatial components of binding. 18F-AV-1451 binding was increased in semantic variant primary progressive aphasia compared to controls in the temporal regions, and both semantic variant primary progressive aphasia and behavioural variant frontotemporal dementia differed from controls in the expression of principal spatial components of binding, across temporal and frontotemporal cortex, respectively. There was a strong positive correlation between 11C-PK-11195 and 18F-AV-1451 uptake in all disease groups, across widespread cortical regions. We confirmed this association with post-mortem quantification in 12 brains, demonstrating strong associations between the regional densities of microglia and neuropathology in FTLD-TDP (A), FTLD-TDP (C), and FTLD-Pick's. This was driven by amoeboid (activated) microglia, with no change in the density of ramified (sessile) microglia. The multivariate distribution of 11C-PK-11195 binding related better to clinical heterogeneity than did 18F-AV-1451: distinct spatial modes of neuroinflammation were associated with different frontotemporal dementia syndromes and supported accurate classification of participants. These in vivo findings indicate a close association between neuroinflammation and protein aggregation in frontotemporal dementia. The inflammatory component may be important in shaping the clinical and neuropathological patterns of the diverse clinical syndromes of frontotemporal dementia.
Assuntos
Demência Frontotemporal/metabolismo , Inflamação/metabolismo , Agregados Proteicos , Idoso , Carbolinas/metabolismo , Radioisótopos de Carbono/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a DNA/metabolismo , Feminino , Demência Frontotemporal/complicações , Humanos , Inflamação/complicações , Isoquinolinas/metabolismo , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Ligação Proteica , Tauopatias/metabolismoRESUMO
Unlike other sensory systems, the structural connectivity patterns of the human vestibular cortex remain a matter of debate. Based on their functional properties and hypothesized centrality within the vestibular network, the 'core' cortical regions of this network are thought to be areas in the posterior peri-sylvian cortex, in particular the retro-insula (previously named the posterior insular cortex-PIC), and the subregion OP2 of the parietal operculum. To study the vestibular network, structural connectivity matrices from n=974 healthy individuals drawn from the public Human Connectome Project (HCP) repository were estimated using multi-shell diffusion-weighted data followed by probabilistic tractography and spherical-deconvolution informed filtering of tractograms in combination with subject-specific grey-matter parcellations. Weighted graph-theoretical measures, modularity, and 'hubness' of the multimodal vestibular network were then estimated, and a structural lateralization index was defined in order to assess the difference in fiber density of homonym regions in the right and left hemisphere. Differences in connectivity patterns between OP2 and PIC were also estimated. We found that the bilateral intraparietal sulcus, PIC, and to a lesser degree OP2, are key 'hub' regions within the multimodal vestibular network. PIC and OP2 structural connectivity patterns were lateralized to the left hemisphere, while structural connectivity patterns of the posterior peri-sylvian supramarginal and superior temporal gyri were lateralized to the right hemisphere. These lateralization patterns were independent of handedness. We also found that the structural connectivity pattern of PIC is consistent with a key role of PIC in visuo-vestibular processing and that the structural connectivity pattern of OP2 is consistent with integration of mainly vestibular somato-sensory and motor information. These results suggest an analogy between PIC and the simian visual posterior sylvian (VPS) area and OP2 and the simian parieto-insular vestibular cortex (PIVC). Overall, these findings may provide novel insights to the current models of vestibular function, as well as to the understanding of the complexity and lateralized signs of vestibular syndromes.
Assuntos
Percepção de Movimento/fisiologia , Vias Neurais/anatomia & histologia , Córtex Somatossensorial/anatomia & histologia , Vestíbulo do Labirinto/anatomia & histologia , Adulto , Conectoma/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Córtex Somatossensorial/fisiologia , Vestíbulo do Labirinto/fisiologiaRESUMO
INTRODUCTION: Associations between cerebral small vessel disease (SVD) and inflammation have been largely examined using peripheral blood markers of inflammation, with few studies measuring inflammation within the brain. We investigated the cross-sectional relationship between SVD and in vivo neuroinflammation using [11C]PK11195 positron emission tomography (PET) imaging. METHODS: Forty-two participants were recruited (according to NIA-AA guidelines, 14 healthy controls, 14 mild Alzheimer's disease, 14 amyloid-positive mild cognitive impairment). Neuroinflammation was assessed using [11C]PK11195 PET imaging, a marker of microglial activation. To quantify SVD, we assessed white matter hyperintensities (WMH), enlarged perivascular spaces, cerebral microbleeds and lacunes. Composite scores were calculated for global SVD burden, and SVD subtypes of hypertensive arteriopathy and cerebral amyloid angiopathy (CAA). General linear models examined associations between SVD and [11C]PK11195, adjusting for sex, age, education, cognition, scan interval, and corrected for multiple comparisons via false discovery rate (FDR). Dominance analysis directly compared the relative importance of hypertensive arteriopathy and CAA scores as predictors of [11C]PK11195. RESULTS: Global [11C]PK11195 binding was associated with SVD markers, particularly in regions typical of hypertensive arteriopathy: deep microbleeds (ß=0.63, F(1,35)=35.24, p<0.001), deep WMH (ß=0.59, t=4.91, p<0.001). In dominance analysis, hypertensive arteriopathy score outperformed CAA in predicting [11C]PK11195 binding globally and in 28 out of 37 regions of interest, especially the medial temporal lobe (ß=0.66-0.76, t=3.90-5.58, FDR-corrected p (pFDR)=<0.001-0.002) and orbitofrontal cortex (ß=0.51-0.57, t=3.53-4.30, pFDR=0.001-0.004). CONCLUSION: Microglial activation is associated with SVD, particularly with the hypertensive arteriopathy subtype of SVD. Although further research is needed to determine causality, our study suggests that targeting neuroinflammation might represent a novel therapeutic strategy for SVD.