RESUMO
SIGNIFICANCE STATEMENT: Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc. Moreover, Ip6k1/2-/- mice also show symptoms of more generalized kidney dysfunction. Thus, our results suggest that IP6Ks are essential for phosphate metabolism and proper kidney function in mammals. BACKGROUND: Inorganic phosphate is an essential mineral, and its plasma levels are tightly regulated. In mammals, kidneys are critical for maintaining phosphate homeostasis through mechanisms that ultimately regulate the expression of the Na + /Pi cotransporters NaPi-IIa and NaPi-IIc in proximal tubules. Inositol pyrophosphate 5-IP 7 , generated by IP6Ks, is a main regulator of phosphate metabolism in yeast and plants. IP6Ks are conserved in mammals, but their role in phosphate metabolism in vivo remains unexplored. METHODS: We used in vitro (opossum kidney cells) and in vivo (renal tubular-specific Ip6k1/2-/- mice) models to analyze the role of IP6K1/2 in phosphate homeostasis in mammals. RESULTS: In both systems, Ip6k1 and Ip6k2 are responsible for synthesis of 5-IP 7 . Depletion of Ip6k1/2 in vitro reduced phosphate transport and mRNA expression of Na + /Pi cotransporters, and it blunts phosphate transport adaptation to changes in ambient phosphate. Renal ablation of both kinases in mice also downregulates the expression of NaPi-IIa and NaPi-IIc and lowered the uptake of phosphate into proximal renal brush border membranes. In addition, the absence of Ip6k1 and Ip6k2 reduced the plasma concentration of fibroblast growth factor 23 and increased bone resorption, despite of which homozygous males develop hypophosphatemia. Ip6k1/2-/- mice also show increased diuresis, albuminuria, and hypercalciuria, although the morphology of glomeruli and proximal brush border membrane seemed unaffected. CONCLUSIONS: Depletion of renal Ip6k1/2 in mice not only altered phosphate homeostasis but also dysregulated other kidney functions.
Assuntos
Túbulos Renais , Fosfotransferases (Aceptor do Grupo Fosfato) , Animais , Masculino , Camundongos , Rim/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Túbulos Renais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismoRESUMO
SIGNIFICANCE STATEMENT: Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND: In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS: The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS: After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS: This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.
Assuntos
Acidose , Injúria Renal Aguda , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Calcitriol , Ácido Fólico , Inflamação , Interleucina-6 , Hormônio Paratireóideo , Fosfatos , RNA MensageiroRESUMO
Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.
Assuntos
Claudina-3 , Fator de Crescimento de Fibroblastos 23 , Absorção Intestinal , Fosfatos , Animais , Fosfatos/metabolismo , Fosfatos/urina , Camundongos , Claudina-3/metabolismo , Claudina-3/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Calcitriol/metabolismo , Calcitriol/sangue , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Mucosa Intestinal/metabolismoRESUMO
Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.
Assuntos
Injúria Renal Aguda , Ácido Fólico , Masculino , Feminino , Camundongos , Animais , Injúria Renal Aguda/patologia , Rim/patologia , Nitrogênio da Ureia Sanguínea , Camundongos Endogâmicos C57BLRESUMO
Ovarian cancer G protein-coupled receptor 1 (OGR1) (Gpr68) and G protein-coupled receptor 4 (GPR4) (Gpr4) are proton-activated G protein-coupled receptors that are stimulated upon increased extracellular acidity. These receptors have various physiological and pathophysiological roles in renal acid-base physiology, tissue inflammation, and fibrosis among others. Their function in injured renal tissue, however, remains mostly unclear. To address this, we investigated their role in crystalline nephropathy by increasing the oxalate intake of GPR4 KO and OGR1 KO mice. After 10 days of high-oxalate intake and 4 days of recovery, renal crystal content, histopathology, filtration function, and inflammation were assessed. While GPR4 deficiency did not show major alterations in disease progression, OGR1 KO mice had higher urinary calcium levels and exacerbated crystal accumulation accompanied by decreased creatinine clearance and urea excretion and a decreased presence of regulatory T (Treg) cells in kidney tissue. When lowering the severity of the kidney injury, OGR1 KO mice were more prone to develop crystalline nephropathy. In this setting, OGR1 KO mice displayed an increased activation of the immune system and a higher production of proinflammatory cytokines by T cells and macrophages. Taken together, in the acute setting of oxalate-induced nephropathy, the lack of the proton-activated G protein-coupled receptor (GPCR) GPR4 does not influence disease. OGR1 deficiency, however, increases crystal deposition leading to impaired kidney function. Thus, OGR1 may be important to limit kidney crystal deposition, which might subsequently be relevant for the pathophysiology of oxalate kidney stones or other crystallopathies.
Assuntos
Neoplasias Ovarianas , Prótons , Feminino , Animais , Camundongos , Humanos , Receptores Acoplados a Proteínas G , Rim , Inflamação , OxalatosRESUMO
Studies addressing homeostasis of inorganic phosphate (Pi) are mostly restricted to murine models. Data provided by genetically modified mice suggest that renal Pi reabsorption is primarily mediated by the Na+/Pi cotransporter NaPi-IIa/Slc34a1, whereas the contribution of NaPi-IIc/Slc34a3 in adult animals seems negligible. However, mutations in both cotransporters associate with hypophosphatemic syndromes in humans, suggesting major inter-species heterogeneity. Urinary extracellular vesicles (UEV) have been proposed as an alternative source to analyse the intrinsic expression of renal proteins in vivo. Here, we analyse in rats whether the protein abundance of renal Pi transporters in UEV correlates with their renal content. For that, we compared the abundance of NaPi-IIa and NaPi-IIc in paired samples from kidneys and UEV from rats fed acutely and chronically on diets with low or high Pi. In renal brush border membranes (BBM) NaPi-IIa was detected as two fragments corresponding to the full-length protein and to a proteolytic product, whereas NaPi-IIc migrated as a single full-length band. The expression of NaPi-IIa (both fragments) in BBM adapted to acute as well to chronic changes of dietary Pi, whereas adaptation of NaPi-IIc was only detected in response to chronic administration. Both transporters were detected in UEV as well. UEV reflected the renal adaptation of the NaPi-IIa proteolytic fragment (but not the full-length protein) upon chronic but not acute dietary changes, while also reproducing the chronic regulation of NaPi-IIc. Thus, the composition of UEV reflects only partially changes in the expression of NaPi-IIa and NaPi-IIc at the BBM triggered by dietary Pi.
Assuntos
Vesículas Extracelulares , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Vesículas Extracelulares/metabolismo , Humanos , Rim/metabolismo , Camundongos , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Ratos , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genéticaRESUMO
Chronic kidney disease (CKD) affects approximately 10-13% of the population worldwide and halting its progression is a major clinical challenge. Metabolic acidosis is both a consequence and a possible driver of CKD progression. Alkali therapy counteracts these effects in CKD patients, but underlying mechanisms remain incompletely understood. Here we show that bicarbonate supplementation protected renal function in a murine CKD model induced by an oxalate-rich diet. Alkali therapy had no effect on the aldosterone-endothelin axis but promoted levels of the anti-aging protein klotho; moreover, it suppressed adhesion molecules required for immune cell invasion along with reducing T-helper cell and inflammatory monocyte invasion. Comparing transcriptomes from the murine crystallopathy model and from human biopsies of kidney transplant recipients (KTRs) suffering from acidosis with or without alkali therapy unveils parallel transcriptome responses mainly associated with lipid metabolism and oxidoreductase activity. Our data reveal novel pathways associated with acidosis in kidney disease and sensitive to alkali therapy and identifies potential targets through which alkali therapy may act on CKD and that may be amenable for more targeted therapies.
Assuntos
Acidose , Insuficiência Renal Crônica , Acidose/complicações , Acidose/tratamento farmacológico , Álcalis/uso terapêutico , Animais , Feminino , Humanos , Inflamação , Rim/metabolismo , Masculino , CamundongosRESUMO
Fibroblast growth factor 23 (FGF23) is a main regulator of mineral homeostasis. Low and high circulating FGF23 levels are associated with bone, renal, cardiovascular diseases, and increased mortality. Understanding the factors and signaling pathways affecting FGF23 levels is crucial for the management of these diseases and their complications. Here, we show that activation of the Jak1/Stat3 signaling pathway leads to inflammation in liver and to an increase in hepatic FGF23 synthesis, a key hormone in mineral metabolism. This increased synthesis leads to massive C-terminal FGF23 circulating levels, the inactive C-terminal fragment, and increased intact FGF23 levels, the active form, resulting in imbalanced production and cleavage. Liver inflammation does not lead to activation of the calcineurin-NFAT pathway, and no signs of systemic inflammation could be observed. Despite the increase of active intact FGF23, excessive C-terminal FGF23 levels block the phosphaturic activity of FGF23. Therefore, kidney function and renal αKlotho expression are normal and no activation of the MAPK pathway was detected. In addition, activation of the Jak1/Stat3 signaling pathway leads to high calcitriol levels and low parathyroid hormone production. Thus, JAK1 is a central regulator of mineral homeostasis. Moreover, this study also shows that in order to assess the impact of high FGF23 levels on disease and kidney function, the source and the balance in FGF23 production and cleavage are critical.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Fígado/imunologia , Fígado/metabolismo , Animais , Osso e Ossos/metabolismo , Linhagem Celular , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Imunoprecipitação , Inflamação/genética , Janus Quinase 1/genética , Rim/metabolismo , Camundongos , Fator de Transcrição STAT3/metabolismoRESUMO
KEY POINTS: Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH)2 vitamin D3 but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH)2 vitamin D3 to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes. Instead, the same treatment failed to alter phosphate transport in intestinal-depleted Slc34a2-deficient mice. In both genotypes, 1,25(OH)2 vitamin D3 induced similar hyperphosphaturic responses and changes in the plasma levels of FGF23 and PTH. While urinary phosphate loss induced by administration of 1,25(OH)2 vitamin D3 did not alter plasma phosphate, further studies should investigate whether chronic administration would lead to phosphate imbalance in mice with reduced active intestinal absorption. ABSTRACT: Intestinal absorption of phosphate is stimulated by 1,25(OH)2 vitamin D3. At least two distinct mechanisms underlie phosphate absorption in the gut, an active transcellular transport requiring the Na+ /phosphate cotransporter NaPi-IIb/Slc34a2, and a poorly characterized paracellular passive pathway. 1,25(OH)2 vitamin D3 stimulates NaPi-IIb expression and function, and loss of NaPi-IIb reduces intestinal phosphate absorption. However, it is remains unknown whether NaPi-IIb is the only target for hormonal regulation by 1,25(OH)2 vitamin D3 . Here we compared the effects of intraperitoneal administration of 1,25(OH)2 vitamin D3 (2 days, once per day) in wild-type and intestinal-specific Slc34a2-deficient mice, and analysed trans- vs. paracellular routes of phosphate absorption. We found that treatment stimulated active transport of phosphate only in jejunum of wild-type mice, though NaPi-IIb protein expression was upregulated in jejunum and ileum. In contrast, 1,25(OH)2 vitamin D3 administration had no effect in Slc34a2-deficient mice, suggesting that the hormone specifically regulates NaPi-IIb expression. In both groups, 1,25(OH)2 vitamin D3 elicited the expected increase of plasma fibroblast growth factor 23 (FGF23) and reduction of parathyroid hormone (PTH). Treatment resulted in hyperphosphaturia (and hypercalciuria) in both genotypes, though mice remained normophosphataemic. While increased intestinal absorption and higher FGF23 can trigger the hyperphosphaturic response in wild types, only higher FGF23 can explain the renal response in Slc34a2-deficient mice. Thus, 1,25(OH)2 vitamin D3 stimulates intestinal phosphate absorption by acting on the active transcellular pathway mostly mediated by NaPi-IIb while the paracellular pathway appears not to be affected.
Assuntos
Colecalciferol , Fosfatos , Animais , Transporte Biológico Ativo , Colecalciferol/farmacologia , Fator de Crescimento de Fibroblastos 23 , Absorção Intestinal , Transporte de Íons , CamundongosRESUMO
BACKGROUND: Phosphate intake has increased in the last decades due to a higher consumption of processed foods. This higher intake is detrimental for patients with chronic kidney disease, increasing mortality and cardiovascular disease risk and accelerating kidney dysfunction. Whether a chronic high phosphate diet is also detrimental for the healthy population is still under debate. METHODS: We fed healthy mature adult mice over a period of one year with either a high (1.2% w/w) or a standard (0.6% w/w) phosphate diet, and investigated the impact of a high phosphate diet on mineral homeostasis, kidney function and bone health. RESULTS: The high phosphate diet increased plasma phosphate, parathyroid hormone (PTH) and calcitriol levels, with no change in fibroblast growth factor 23 levels. Urinary phosphate, calcium and ammonium excretion were increased. Measured glomerular filtration rate was apparently unaffected, while blood urea was lower and urea clearance was higher in animals fed the high phosphate diet. No change was observed in plasma creatinine levels. Blood and urinary pH were more acidic paralleled by higher bone resorption observed in animals fed a high phosphate diet. Total and cortical bone mineral density was lower in animals fed a high phosphate diet and this effect is independent of the higher PTH levels observed. CONCLUSIONS: A chronic high phosphate intake did not cause major renal alterations, but affected negatively bone health, increasing bone resorption and decreasing bone mineral density.
RESUMO
Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.
Assuntos
Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Regulação para Cima , Animais , Membrana Celular/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fosfatos/metabolismo , Ratos Wistar , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismoRESUMO
Hypercalciuria is a common feature during metabolic acidosis and associates to nephrolithiasis and nephrocalcinosis. The mechanisms sensing acidosis and inducing increased urinary calcium excretion are still unknown. Here we tested whether mice deficient for proton-activated Ovarian cancer G-protein coupled receptor 1 (OGR1 or Gpr68) have reduced urinary excretion of calcium during chronic metabolic acidosis. In the kidney, OGR1 mRNA was found in cells of the glomerulus, proximal tubule, and interstitium including endothelial cells. Wild type (OGR1+/+) and OGR1 knockout (OGR1-/-) mice were given standard chow without (control) or loaded with ammonium chloride for one or seven days to induce acute or chronic metabolic acidosis, respectively. No differences in responding to the acid load were observed in the knockout mice, except for higher plasma bicarbonate after one day. Bone mineral density, resorption activity of osteoclasts, and urinary deoxypyridinoline were similar between genotypes. During metabolic acidosis the expression levels of key proteins involved in calcium reabsorption, i.e. the sodium/proton exchanger (NHE3), the epithelial calcium-selective channel TRPV5, and the vitamin D-dependent calcium binding protein calbindin-D28k were all higher in the knockout mice compared to wild type mice. This is consistent with the previous demonstration that OGR1 reduces NHE3 activity in proximal tubules of mice. Wild-type mice displayed a non-linear positive association between urinary proton and calcium excretion which was lost in the knockout mice. Thus, OGR1 is a pH sensor involved in the hypercalciuria of metabolic acidosis by controlling NHE3 activity in the proximal tubule. Hence, novel drugs modulating OGR1 activity may improve renal calcium handling.
Assuntos
Acidose , Cálcio , Receptores Acoplados a Proteínas G , Acidose/genética , Animais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP , Túbulos Renais Proximais/metabolismo , Camundongos , Camundongos Knockout , Prótons , Receptores Acoplados a Proteínas G/genética , Trocador 3 de Sódio-HidrogênioRESUMO
BACKGROUND/AIMS: Phosphate (Pi) homeostasis is controlled by the intestine and kidneys whose capacities to transport Pi are under endocrine control. Several studies point to intestinal absorption as a therapeutic target to modulate Pi homeostasis. The small intestine is responsible for almost all Pi absorption in the gut, a process involving Na+-dependent and independent mechanisms. Three Na+-dependent Pi cotransporters have been described in the gastrointestinal tract: NaPi-IIb (a SLC34 member) and Pit-1 and Pit-2 (SLC20 transporters). We recently analysed the acute hormonal and renal response to intragastric (i.g) and intravenous (i.v) Pi-loading. This study demonstrated that the kidney quickly adapts to Pi-loading, with changes manifesting earlier in the i.v than i.g intervention. The aim of this work was to extend the previous studies in order to investigate the acute adaptation of intestinal transport of Pi and expression of intestinal Na+/Pi-cotransporters in response to acute Pi-loading. METHODS: Duodenal and jejunal mucosa was collected 40 minutes and/or 4 hours after administration (i.g and i.v) of either NaCl or Pi to anaesthetized rats. Uptakes of Pi and protein expression of Na+/Pi cotransporters were measured in brush border membrane vesicles (BBMV); the cotransporters' mRNA abundance was quantified by real-time PCR in total RNA extracted from whole mucosa. RESULTS: Pi-loading did not modify transport of Pi in duodenal and jejunal BBMV 4 hours after treatment. Administration of Pi did not alter either the intestinal expression of NaPi-IIb and Pit-2 mRNAs, whereas Pit-1 mRNA expression was only regulated (diminished) in duodenum collected 4 hours after i.g Pi-loading. NaPi-IIb protein expression was decreased in duodenum 4 hours upon i.v Pi infusion, whereas the duodenal and jejunal abundance of the cotransporter was unaffected by i.g administration of Pi. CONCLUSION: Together, these data suggest that the intestine responds acutely to Pi-loading, though this response seems slower than the renal adaptation.
Assuntos
Regulação para Baixo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Fosfatos/farmacologia , Administração Intravenosa , Animais , Glucose/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismo , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismoRESUMO
Fibroblast growth factor 23 (FGF23) is a major endocrine regulator of phosphate and 1,25 (OH)2 vitamin D3 metabolism and is mainly produced by osteocytes. Its production is upregulated by a variety of factors including 1,25 (OH)2 vitamin D3, high dietary phosphate intake, and parathyroid hormone (PTH). Recently, iron deficiency and hypoxia have been suggested as additional regulators of FGF23 and a role of erythropoietin (EPO) was shown. However, the regulation of FGF23 by EPO and the impact on phosphate and 1,25(OH)2 vitamin D3 are not completely understood. Here, we demonstrate that acute administration of recombinant human EPO (rhEPO) to healthy humans increases the C-terminal fragment of FGF23 (C-terminal FGF23) but not intact FGF23 (iFGF23). In mice, rhEPO stimulates acutely (24 h) C-terminal FGF23 but iFGF23 only after 4 days without effects on PTH and plasma phosphate. 1,25 (OH)2 D3 levels and αklotho expression in the kidney decrease after 4 days. rhEPO induced FGF23 mRNA in bone marrow but not in bone, with increased staining of FGF23 in CD71+ erythroid precursors in bone marrow. Chronic elevation of EPO in transgenic mice increases iFGF23. Finally, acute injections of recombinant FGF23 reduced renal EPO mRNA expression. Our data demonstrate stimulation of FGF23 levels in mice which impacts mostly on 1,25 (OH)2 vitamin D3 levels and metabolism. In humans, EPO is mostly associated with the C-terminal fragment of FGF23; in mice, EPO has a time-dependent effect on both FGF23 forms. EPO and FGF23 may form a feedback loop controlling and linking erythropoiesis and mineral metabolism.
Assuntos
Eritropoetina/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação para Cima , Adulto , Animais , Medula Óssea/metabolismo , Calcitriol/metabolismo , Células Cultivadas , Retroalimentação Fisiológica , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/metabolismo , Humanos , Rim/metabolismo , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/metabolismoRESUMO
High circulating fibroblast growth factor 23 (FGF23) levels are probably a major risk factor for cardiovascular disease in chronic kidney disease. FGF23 interacts with the receptor FGFR4 in cardiomyocytes inducing left ventricular hypertrophy. Moreover, in the liver FGF23 via FGFR4 increases the risk of inflammation which is also found in chronic kidney disease. In contrast, X-linked hypophosphatemia is characterized by high FGF23 circulating levels due to loss of function mutations of the phosphate-regulating gene with homologies to an endopeptidase on the X chromosome (PHEX), but is not characterized by high cardiovascular morbidity. Here we used a novel murine X-linked hypophosphatemia model, the PhexC733RMhda mouse line, bearing an amino acid substitution (p.Cys733Arg) to test whether high circulating FGF23 in the absence of renal injury would trigger cardiovascular disease. As X-linked hypophosphatemia patient mimics, these mice show high FGF23 levels, hypophosphatemia, normocalcemia, and low/normal vitamin D levels. Moreover, these mice show hyperparathyroidism and low circulating soluble αKlotho levels. At the age of 27 weeks we found no left ventricular hypertrophy and no alteration of cardiac function as assessed by echocardiography. These mice also showed no activation of the calcineurin/NFAT pathway in heart and liver and no tissue and systemic signs of inflammation. Importantly, blood pressure, glomerular filtration rate and urea clearance were similar between genotypes. Thus, the presence of high circulating FGF23 levels alone in the absence of renal impairment and normal/high phosphate levels is not sufficient to cause cardiovascular disease.
Assuntos
Raquitismo Hipofosfatêmico Familiar/sangue , Fatores de Crescimento de Fibroblastos/sangue , Hipertrofia Ventricular Esquerda/epidemiologia , Animais , Modelos Animais de Doenças , Ecocardiografia , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Coração/diagnóstico por imagem , Humanos , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/etiologia , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Transgênicos , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Fosfatos/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Fatores de Risco , Microtomografia por Raio-XRESUMO
Background: Kidney stones are frequent in industrialized countries with a lifetime risk of 10 to 15%. A high percentage of individuals experience recurrence. Calcium-containing stones account for more than 80% of kidney stones. Diet, environmental factors, behavior, and genetic variants contribute to the development of kidney stones. Osteocytes excrete the 21 kDa glycoprotein sclerostin, which inhibits bone formation by osteoblasts. Animal data suggests that sclerostin might directly or indirectly regulate calcium excretion via the kidney. As hypercalciuria is one of the most relevant risk factors for kidney stones, sclerostin might possess pathogenic relevance in nephrolithiasis. Methods: We performed a prospective cross-sectional observational controlled study in 150 recurrent kidney stone formers (rKSF) to analyse the association of sclerostin with known stone risk factors and important modulators of calcium-phosphate metabolism. Serum sclerostin levels were determined at the first visit. As controls, we used 388 non-stone formers from a large Swiss epidemiological cohort. Results: Sclerostin was mildly increased in rKSF in comparison to controls. This finding was more pronounced in women compared to men. Logistic regression indicated an association of serum sclerostin with rKSF status. In hypercalciuric individuals, sclerostin levels were not different from normocalciuric patients. In Spearman correlation analysis we found a positive correlation between sclerostin, age, and BMI and a negative correlation with eGFR. There was a weak correlation with iPTH and intact FGF 23. In contrast, serum sclerostin levels were not associated with 25-OH Vitamin D3, 1,25-dihydroxy-Vitamin D3, urinary calcium and phosphate or other urinary lithogenic risk factors. Conclusion: This is the first prospective controlled study investigating serum sclerostin in rKSF. Sclerostin levels were increased in rKSF independent of hypercalciuria and significantly associated with the status as rKSF. It appears that mechanisms other than hypercalciuria may be involved and thus further studies are required to elucidate underlying pathways.
RESUMO
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone. X-linked hypophosphatemia (XLH) is the most prevalent inherited phosphate wasting disorder due to mutations in the PHEX gene, which cause elevated circulating FGF23 levels. Clinically, it is characterized by growth impairment and defective mineralization of bones and teeth. Treatment of XLH is challenging. Since 2018, neutralizing antibodies against FGF23 have dramatically improved the therapy of XLH patients, although not all patients fully respond to the treatment, and it is very costly. C-terminal fragments of FGF23 have recently emerged as blockers of intact FGF23 signaling. Here, we analyzed the effect on growth and bone of a short 26 residues long C-terminal FGF23 (cFGF23) fragment and two N-acetylated and C-amidated cFGF23 peptides using young XLH mice (Phex C733RMhda mice). Although no major changes in blood parameters were observed after 7 days of treatment with these peptides, bone length and growth plate structure improved. The modified peptides accelerated the growth rate probably by improving growth plate structure and dynamics. The processes of chondrocyte proliferation, death, hypertrophy, and the cartilaginous composition in the growth plate were partially improved in young treated XLH mice. In conclusion, these findings contribute to understand the role of FGF23 signaling in growth plate metabolism and show that this may occur despite continuous hypophosphatemia.
Assuntos
Raquitismo Hipofosfatêmico Familiar , Lâmina de Crescimento , Animais , Camundongos , Osso e Ossos/metabolismo , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/metabolismo , FosfatosRESUMO
NK1 is a tachykinin receptor highly relevant to tumorigenesis and metastasis development in breast cancer and other carcinomas. Despite the substantial efforts done to develop potent NK1 receptor antagonists, none of these antagonists had shown good antitumor activity in clinical trials. Now, we have tested the effect of inhibition of the neuropeptide Substance P (SP), a NK1 ligand, as a potential therapeutic approach in cancer. We found that the inhibition of SP with antibodies strongly inhibit cell growth and induce apoptosis in breast, colon, and prostate cancer cell lines. These effects were accompained by a decrease in the mitogen-activated kinase singaling pathway. Interestingly, in some cell lines SP abrogation decreased the steady state of Her2 and EGFR, suggesting that SP-mediated signaling is important for the basal activity of these ErbB receptors. In consequence, we observed a blockade of the cell cycle progression and the inhibition of several cell cycle-related proteins including mTOR. SP inhibition also induced cell death in cell lines resistant to Lapatinib and Trastuzumab that have increased levels of active Her2, suggesting that this therapeutic approach could be also effective for those cancers resistant to current anti-ErbB therapies. Thus, we propose a new therapeutic strategy for those cancers that express NK1 receptor and/or other tachykinin receptors, based in the immuno-blockade of the neuropeptide SP.
Assuntos
Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Substância P/antagonistas & inibidores , Anticorpos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lapatinib , Ligantes , Masculino , Neoplasias/patologia , Antagonistas dos Receptores de Neurocinina-1 , Piperidinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Quinazolinas/farmacologia , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Substância P/imunologia , TrastuzumabRESUMO
Kidneys are key regulators of phosphate homeostasis. Biallelic mutations of the renal Na+/phosphate cotransporter SLC34A1/NaPi-IIa cause idiopathic infantile hypercalcemia, whereas monoallelic mutations were frequently noted in adults with kidney stones. Genome-wide-association studies identified SLC34A1 as a risk locus for chronic kidney disease. Pathogenic mutations in SLC34A1 are present in 4% of the general population. Here, we characterize a mouse model carrying the 91del7 in-frame deletion, a frequent mutation whose significance remains unclear. Under normal dietary conditions, 12 weeks old heterozygous and homozygous males have similar plasma and urinary levels of phosphate as their wild type (WT) littermates, and comparable concentrations of parathyroid hormone, fibroblast growth factor 23 (FGF-23) and 1,25(OH)2 vitamin D3. Renal phosphate transport, and expression of NaPi-IIa and NaPi-IIc cotransporters, was indistinguishable in the three genotypes. Challenging mice with low dietary phosphate did not result in differences between genotypes with regard to urinary and plasma phosphate. Urinary and plasma phosphate, plasma FGF-23 and expression of cotransporters were similar in all genotypes after weaning. Urinary phosphate and bone mineral density were also comparable in 300 days old WT and mutant mice. In conclusion, mice carrying the 91del7 truncation do not show signs of impaired phosphate homeostasis.
Assuntos
Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Minerais/metabolismo , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismoRESUMO
SCOPE: In the last decades, dietary phosphate intake has increased due to a higher consumption of ultraprocessed food. This higher intake has an impact on body composition and health state. Recently, this study finds that a high chronic phosphate diet leads to no major renal alterations, but negatively affects parameters of bone health probably due to the chronic acid load. Here the effect of high phosphate consumption on parameters of energy metabolism is assessed. METHODS AND RESULTS: Healthy mature adult mice are fed for 1 year or 4 months with either a standard (0.6 % w/w) or a high phosphate (1.2 % w/w) diet. Males and females of two different genetic backgrounds are investigated. Mice feed the high phosphate diet show an attenuated body-weight gain, lower respiratory exchange ratio, decreased body fat mass, and increased lean-to-fat mass ratio. Moreover, the high phosphate diet leads to fasting hypoglycemia with no differences in the glucose response to an oral glucose tolerance test. Triglycerides and cholesterol in blood are similar independently of dietary phosphate content. However, 1-methylhistidine is lower in animals feed a chronic high phosphate intake. CONCLUSIONS: High phosphate diet attenuates body weight gain, but induces hypoglycemia and may alter muscle homeostasis.