Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pediatr Diabetes ; 19(3): 388-392, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29193502

RESUMO

Diabetes occurs in 1/90 000 to 1/160 000 births and when diagnosed under 6 months of age is very likely to have a primary genetic cause. FOXP3 encodes a transcription factor critical for T regulatory cell function and mutations are known to cause "immune dysregulation, polyendocrinopathy (including insulin-requiring diabetes), enteropathy, X-linked" (IPEX) syndrome. This condition is often fatal unless patients receive a bone-marrow transplant. Here we describe the phenotype of male neonates and infants who had insulin-requiring diabetes without other features of IPEX syndrome and were found to have mutations in FOXP3. Whole-exome or next generation sequencing of genes of interest was carried out in subjects with isolated neonatal diabetes without a known genetic cause. RT-PCR was carried out to investigate the effects on RNA splicing of a novel intronic splice-site variant. Four male subjects were found to have FOXP3 variants in the hemizygous state: p.Arg114Trp, p.Arg347His, p.Lys393Met, and c.1044+5G>A which was detected in 2 unrelated probands and in a brother diagnosed with diabetes at 2.1 years of age. Of these, p.Arg114Trp is likely a benign rare variant found in individuals of Ashkenazi Jewish ancestry and p.Arg347His has been previously described in patients with classic IPEX syndrome. The p.Lys393Met and c.1044+5G>A variants are novel to this study. RT-PCR studies of the c.1044+5G>A splice variant confirmed it affected RNA splicing by generating both a wild type and truncated transcript. We conclude that FOXP3 mutations can cause early-onset insulin-requiring diabetes with or without other features of IPEX syndrome.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diabetes Mellitus/genética , Diarreia/diagnóstico , Fatores de Transcrição Forkhead/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças do Sistema Imunitário/congênito , Sistema de Registros , Diabetes Mellitus Tipo 1/diagnóstico , Humanos , Doenças do Sistema Imunitário/diagnóstico , Lactente , Recém-Nascido , Masculino
2.
Diabetologia ; 58(7): 1430-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25877689

RESUMO

AIMS/HYPOTHESIS: Individuals with heterozygous activating mutations of the KCNJ11 gene encoding a subunit of the ATP-sensitive potassium channel (KATP) can usually be treated with oral sulfonylurea (SU) pills in lieu of insulin injections. The aim of this study was to test our hypothesis that younger age at the time of initiation of SU therapy is correlated with lower required doses of SU therapy, shorter transition time and decreased likelihood of requiring additional diabetes medications. METHODS: We performed a retrospective cohort study using data on 58 individuals with neonatal diabetes due to KCNJ11 mutations identified through the University of Chicago Monogenic Diabetes Registry ( http://monogenicdiabetes.uchicago.edu/registry ). We assessed the influence of age at initiation of SU therapy on treatment outcomes. RESULTS: HbA1c fell from an average of 8.5% (69 mmol/mol) before transition to 6.2% (44 mmol/mol) after SU therapy (p < 0.001). Age of initiation of SU correlated with the dose (mg kg(-1) day(-1)) of SU required at follow-up (r = 0.80, p < 0.001). Similar associations were observed across mutation subtypes. Ten participants required additional glucose-lowering medications and all had initiated SU at age 13 years or older. No serious adverse events were reported. CONCLUSIONS/INTERPRETATION: Earlier age at initiation of SU treatment is associated with improved response to SU therapy. Declining sensitivity to SU may be due to loss of beta cell mass over time in those treated with insulin. Our data support the need for early genetic diagnosis and appropriate personalised treatment in all cases of neonatal diabetes.


Assuntos
Diabetes Mellitus/congênito , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Canais de Potássio Corretores do Fluxo de Internalização/genética , Compostos de Sulfonilureia/uso terapêutico , Adolescente , Adulto , Fatores Etários , Idade de Início , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Glibureto/uso terapêutico , Hemoglobinas Glicadas/análise , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
3.
Pediatr Diabetes ; 9(5): 450-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18662362

RESUMO

BACKGROUND/OBJECTIVE: Mutations in KCNJ11, ABCC8, or INS are the cause of permanent neonatal diabetes mellitus in about 50% of patients diagnosed with diabetes before 6 months of age and in a small fraction of those diagnosed between 6 and 12 months. The aim of this study was to identify the genetic cause of diabetes in 77 consecutive patients referred to the University of Chicago with diabetes diagnosed before 1 yr of age. METHODS: We used Oragene DNA Self-Collection kit to obtain a saliva sample for DNA. We sequenced the protein-coding regions of KCNJ11, ABCC8, and INS using standard methods. RESULTS: We enrolled 32 patients diagnosed with diabetes before 6 months of age and 45 patients diagnosed between 6 and 12 months. We identified a mutation in KCNJ11 in 14 patients from 12 families and in INS in 7 patients from 4 families. Three of the patients with an INS mutation were diagnosed with diabetes between 6 and 12 months of age. Finally, we found that two patients had an abnormality of chromosome 6q24 associated with transient neonatal diabetes mellitus. CONCLUSIONS: We were able to establish a genetic cause of diabetes in 63% of patients diagnosed with diabetes before 6 months of age and in 7% of patients diagnosed between 6 and 12 months. Genetic testing, which is critical for guiding appropriate management, should be considered in patients diagnosed with diabetes before 1 yr of age, especially if they are autoantibody negative, although the presence of autoantibodies does not rule out a monogenic cause.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Diabetes Mellitus Tipo 1/genética , Insulina/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Droga/genética , Adolescente , Adulto , Criança , Pré-Escolar , Complicações do Diabetes , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Glibureto/uso terapêutico , Humanos , Lactente , Recém-Nascido , Insulina/uso terapêutico , Deficiências da Aprendizagem/etiologia , Masculino , Linhagem , Receptores de Sulfonilureias , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA