Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(26): e2205187, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967558

RESUMO

Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3 O4 @L-His and Co3 O4 @D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+ /Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3 O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3 O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 µm. Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.

2.
Small ; : e2306045, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009519

RESUMO

Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.

3.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36772704

RESUMO

Biochemical-chemical sensing with plasmonic sensors is widely performed by tracking the responses of surface plasmonic resonance peaks to changes in the medium. Interestingly, consistent sensitivity and resolution improvements have been demonstrated for gold nanoparticles by analyzing other spectral features, such as spectral inflection points or peak curvatures. Nevertheless, such studies were only conducted on planar platforms and were restricted to gold nanoparticles. In this work, such methodologies are explored and expanded to plasmonic optical fibers. Thus, we study-experimentally and theoretically-the optical responses of optical fiber-doped gold or silver nanospheres and optical fibers coated with continuous gold or silver thin films. Both experimental and numerical results are analyzed with differentiation methods, using total variation regularization to effectively minimize noise amplification propagation. Consistent resolution improvements of up to 2.2× for both types of plasmonic fibers are found, demonstrating that deploying such analysis with any plasmonic optical fiber sensors can lead to sensing resolution improvements.

4.
Chem Soc Rev ; 50(6): 3738-3754, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33586721

RESUMO

From a geometrical perspective, a chiral object does not have mirror planes or inversion symmetry. It exhibits the same physical properties as its mirror image (enantiomer), except for the chiroptical activity, which is often the opposite. Recent advancements have identified particularly interesting implications of chirality on the optical properties of metal nanoparticles, which are intimately related to localized surface plasmon resonance phenomena. Although such resonances are usually independent of the circular polarization of light, specific strategies have been applied to induce chirality, both in assemblies and at the single-particle level. In this tutorial review, we discuss the origin of plasmonic chirality, as well as theoretical models that have been proposed to explain it. We then summarise recent developments in the synthesis of discrete nanoparticles with plasmonic chirality by means of wet-chemistry methods. We conclude with a discussion of promising applications for discrete chiral nanoparticles. We expect this tutorial review to be of interest to researchers from a wide variety of disciplines where chiral plasmonics can be exploited at the nanoparticle level, such as chemical sensing, photocatalysis, photodynamic or photothermal therapies, etc.

5.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802958

RESUMO

Surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) are among the most common and powerful label-free refractive index-based biosensing techniques available nowadays. Focusing on LSPR sensors, their performance is highly dependent on the size, shape, and nature of the nanomaterial employed. Indeed, the tailoring of those parameters allows the development of LSPR sensors with a tunable wavelength range between the ultra-violet (UV) and near infra-red (NIR). Furthermore, dealing with LSPR along optical fiber technology, with their low attenuation coefficients at NIR, allow for the possibility to create ultra-sensitive and long-range sensing networks to be deployed in a variety of both biological and chemical sensors. This work provides a detailed review of the key science underpinning such systems as well as recent progress in the development of several LSPR-based biosensors in the NIR wavelengths, including an overview of the LSPR phenomena along recent developments in the field of nanomaterials and nanostructure development towards NIR sensing. The review ends with a consideration of key advances in terms of nanostructure characteristics for LSPR sensing and prospects for future research and advances in this field.

6.
Angew Chem Int Ed Engl ; 60(51): 26677-26684, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34606151

RESUMO

This work focuses on the systematic investigation of the shape, size, and composition-controlled synthesis of perovskite nanocrystals (NCs) under inert gas-free conditions and using pre-synthesized precursor stock solutions. In the case of CsPbBr3 NCs, we find that the lowering of reaction temperature from ∼175 to 100 °C initially leads to a change of morphology from bulk-like 3D nanocubes to 0D nanocubes with 3D-quantum confinement, while at temperatures below 100 °C the reaction yields 2D nanoplatelets (NPls) with 1D-quantum confinement. However, to our surprise, at higher temperatures (∼215 °C), the reaction yields CsPbBr3 hexapod NCs, which have been rarely reported. The synthesis is scalable, and their halide composition is tunable by simply using different combinations of precursor solutions. The versatility of the synthesis is demonstrated by applying it to relatively less explored shape-controlled synthesis of FAPbBr3 NCs. Despite the synthesis carried out in the air, both the inorganic and hybrid perovskite NCs exhibit nearly-narrow emission without applying any size-selective separation, and it is precisely tunable by controlling the reaction temperature.

7.
Acc Chem Res ; 52(7): 1855-1864, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31243968

RESUMO

For decades, plasmonic nanoparticles have been extensively studied due to their extraordinary properties, related to localized surface plasmon resonances. A milestone in the field has been the development of the so-called seed-mediated growth method, a synthetic route that provided access to an extraordinary diversity of metal nanoparticles with tailored size, geometry and composition. Such a morphological control came along with an exquisite definition of the optical response of plasmonic nanoparticles, thereby increasing their prospects for implementation in various fields. The susceptibility of surface plasmons to respond to small changes in the surrounding medium or to perturb (enhance/quench) optical processes in nearby molecules, has been exploited for a wide range of applications, from biomedicine to energy harvesting. However, the possibilities offered by plasmonic nanoparticles can be expanded even further by their careful assembly into either disordered or ordered structures, in 2D and 3D. The assembly of plasmonic nanoparticles gives rise to coupling/hybridization effects, which are strongly dependent on interparticle spacing and orientation, generating extremely high electric fields (hot spots), confined at interparticle gaps. Thus, the use of plasmonic nanoparticle assemblies as optical sensors have led to improving the limits of detection for a wide variety of (bio)molecules and ions. Importantly, in the case of highly ordered plasmonic arrays, other novel and unique optical effects can be generated. Indeed, new functional materials have been developed via the assembly of nanoparticles into highly ordered architectures, ranging from thin films (2D) to colloidal crystals or supercrystals (3D). The progress in the design and fabrication of 3D supercrystals could pave the way toward next generation plasmonic sensors, photocatalysts, optomagnetic components, metamaterials, etc. In this Account, we summarize selected recent advancements in the field of highly ordered 3D plasmonic superlattices. We first analyze their fascinating optical properties for various systems with increasing degrees of complexity, from an individual metal nanoparticle through particle clusters with low coordination numbers to disordered self-assembled structures and finally to supercrystals. We then describe recent progress in the fabrication of 3D plasmonic supercrystals, focusing on specific strategies but without delving into the forces governing the self-assembly process. In the last section, we provide an overview of the potential applications of plasmonic supercrystals, with a particular emphasis on those related to surface-enhanced Raman scattering (SERS) sensing, followed by a brief highlight of the main conclusions and remaining challenges.

8.
Nat Mater ; 15(11): 1203-1211, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27500808

RESUMO

Most bacteria in nature exist as biofilms, which support intercellular signalling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. As QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in situ, label-free detection of a QS signalling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.


Assuntos
Biofilmes , Imagem Molecular , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Análise Espectral Raman
9.
Nano Lett ; 16(10): 6311-6316, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27648834

RESUMO

Fano resonances are central features in the responses of many systems including atoms, molecules, and nanomaterials. They arise as a consequence of interferences between two channels, most frequently associated with two system modes. In plasmonic materials, Fano interferences between optical modes have been shown, experimentally and theoretically, to induce narrow features in their scattering spectra. By investigating individual silver-gold heterodimers, we first experimentally demonstrate that Fano interference is also a key effect in the optical absorption of plasmonic nano-objects, in agreement with theoretical predictions. Conversely to previously investigated systems, the two interacting modes at the origin of absorptive Fano effect are mostly localized on either one or the other dimer component. Experimental results were obtained by selectively monitoring the optical absorption of one dimer component using a two-color nonlinear time-resolved technique. This also opens the way to full optical far-field noncontact investigations of charge or energy exchanges between nano-objects with a spatial resolution much smaller than the optical wavelength.

10.
J Am Chem Soc ; 138(36): 11453-6, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27556588

RESUMO

Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core-shell NPs (nanorods and nanocubes) into octahedral nanorattles via room-temperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.

11.
Small ; 12(29): 3935-43, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27273895

RESUMO

Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core.

12.
CrystEngComm ; 18(19): 3422-3427, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28496381

RESUMO

Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac)2) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

13.
Small ; 11(33): 4149-57, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25939486

RESUMO

Detection technologies employing optically encoded particles have gained much interest toward clinical diagnostics and drug discovery, but the portfolio of available systems is still limited. The fabrication and characterization of highly stable surface-enhanced resonance Raman scattering (SERRS)-encoded colloids for the identification and imaging of proteins expressed in cells are reported. These plasmonic nanostructures are made of gold octahedra coated with poly(N-isopropylacrylamide) microgels and can be readily encoded with Raman active dyes while retaining high colloidal stability in biofluids. A layer-by-layer polyelectrolyte coating is used to seal the outer surface of the encoded particles and to provide a reactive surface for covalent conjugation with antibodies. The targeted multiplexing capabilities of the SERRS tags are demonstrated by the simultaneous detection and imaging of three tumor-associated surface biomarkers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), and homing cell adhesion molecule (CD44) by SERRS spectroscopy. The plasmonic microgels are able to discriminate tumor A431 (EGFR+/EpCAM+/CD44+) and nontumor 3T3 2.2 (EGFR-/EpCAM-/CD44+) cells while cocultured in vitro.


Assuntos
Resinas Acrílicas/química , Diagnóstico por Imagem/métodos , Ouro/química , Imunofenotipagem/métodos , Neoplasias/diagnóstico , Receptores de Superfície Celular/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Células NIH 3T3 , Nanoestruturas/química , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Superfície Celular/imunologia , Ressonância de Plasmônio de Superfície/métodos
14.
Langmuir ; 31(3): 1142-9, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25526382

RESUMO

We report on the fabrication of thermally responsive hollow pNIPAM particles through the oxidation of the metal core in an Au@pNIPAM system. The selective oxidation of the Au core is achieved by addition of AuCl4(-) to an aqueous dispersion of Au@pNIPAM particles in the presence of cetyltrimethylammonium bromide (CTAB). We fabricate hollow pNIPAM particles with three cross-linking densities (N,N'-methylenebis(acrylamide), BA, at 5%, 10%, and 17.5%). The study of the effect of the amount of BA within the microgel network was performed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), showing its key role in determining the final hollow structure and thermal response. While the thermal responsiveness is largely achieved at low cross-linking densities, the hollow structure only remains at larger cross-linking densities. This was further confirmed by cryo-TEM analysis of hollow pNIPAM particles below and above the volume phase transition temperature (VPTT). Thus, it clearly shows (i) the shrinking of particle size with the temperature at low cross-linking density and (ii) the dependence of particle size on the amount of cross-linker for the final hollow pNIPAM structure. Observed differences in the hollow pNIPAM structure are attributed to different elastic contributions (Π(elas)), showing higher elasticity for microgels synthesized at lower amount of BA.

15.
Chemistry ; 20(35): 10874-83, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25043786

RESUMO

In this minireview, we summarize current research dealing with the combination of noble-metal nanoparticles and different families of supramolecular macrocycles (cyclodextrins, cucurbit[n]urils, calixarenes, and pillar[n]arenes). We intended to select relevant publications on the synthesis of noble-metal nanoparticles with macrocycles acting as capping agents or/and reducing agents, as well as on the post-synthetic metal-nanoparticle modification with macrocycles. We also discuss strategies in which supramolecular chemistry is applied to direct the self-assembly of nanoparticles and formation of polymer composites. We finally describe the main applications of these materials in various fields.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Nanopartículas Metálicas/química
16.
Chemistry ; 20(27): 8404-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24888988

RESUMO

We present a simple procedure for the synthesis of quasi-spherical Au nanoparticles in a wide size range mediated by macrocyclic host molecules, ammonium pillar[5]arene (AP[5]A). The strategy is based on a seeded growth process in which the water-soluble pillar[5]arene undergoes complexation of the Au salt through the ammonium groups, thereby avoiding Au nucleation, while acting as a stabilizer. The presence of the pillar[5]arene onto the Au nanoparticle particle surface is demonstrated by surface-enhanced Raman scattering (SERS) spectroscopy, and the most probable conformation of the molecule when adsorbed on the Au nanoparticles surface is suggested on the basis of theoretical calculations. In addition, we analyze the host-guest interactions of the AP[5]A with 2-naphthoic acid (2NA) by using (1)H NMR spectroscopy and the results are compared with theoretical calculations. Finally, the promising synergetic effects of combining supramolecular chemistry and metal nanoparticles are demonstrated through SERS detection in water of 2NA and a polycyclic aromatic hydrocarbon, pyrene (PYR).


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Compostos de Amônio Quaternário/química , Calixarenos , Naftalenos/química , Tamanho da Partícula , Análise Espectral Raman
17.
Langmuir ; 30(31): 9448-56, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-24999988

RESUMO

The enzymatic activity of human carbonic anhydrase II (HCAII) was studied in the presence of nanoparticles of different nature and charge. Negatively charged nanoparticles inhibit HCAII whereas no effect is seen for positively charged particles. The kinetic effects were correlated with the strength of binding of the enzyme to the particle surface as measured by ITC and adsorption assays. Moreover, conformational changes upon adsorption were observed by circular dichroism. The main initial driving force for the adsorption of HCAII to nanoparticles is of electrostatic nature whereas the hydrophobic effect is not strong enough to drive the initial binding. This is corroborated by the fact that HCAII do not adsorb on positively charged hydrophobic polystyrene nanoparticles. Furthermore, the dehydration of the particle and protein surface seems to play an important role in the inactivation of HCAII by carboxyl-modified polystyrene nanoparticles. On the other hand, the inactivation by unmodified polystyrene nanoparticles is mainly driven by intramolecular interactions established between the protein and the nanoparticle surface upon conformational changes in the protein.


Assuntos
Anidrase Carbônica II/química , Nanopartículas/química , Poliestirenos/química , Adsorção , Anidrase Carbônica II/metabolismo , Humanos , Nanopartículas/metabolismo , Poliestirenos/metabolismo , Eletricidade Estática , Propriedades de Superfície
18.
Microb Biotechnol ; 17(2): e14409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380565

RESUMO

Lectin-glycan interactions sustain fundamental biological processes involved in development and disease. Owing to their unique sugar-binding properties, lectins have great potential in glycobiology and biomedicine. However, their relatively low affinities and broad specificities pose a significant challenge when used as analytical reagents. New approaches for expression and engineering of lectins are in demand to overcome current limitations. Herein, we report the application of bacterial display for the expression of human galectin-3 and mannose-binding lectin in Escherichia coli. The analysis of the cell surface expression and binding activity of the surface-displayed lectins, including point and deletion mutants, in combination with molecular dynamics simulation, demonstrate the robustness and suitability of this approach. Furthermore, the display of functional mannose-binding lectin in the bacterial surface proved the feasibility of this method for disulfide bond-containing lectins. This work establishes for the first time bacterial display as an efficient means for the expression and engineering of human lectins, thereby increasing the available toolbox for glycobiology research.


Assuntos
Escherichia coli , Polissacarídeos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Polissacarídeos/metabolismo
19.
ACS Catal ; 14(9): 6799-6806, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38721378

RESUMO

Plasmonic photocatalysis demonstrates great potential for efficiently harnessing light energy. However, the underlying mechanisms remain enigmatic due to the transient nature of the reaction processes. Typically, plasmonic photocatalysis relies on the excitation of surface plasmon resonance (SPR) in plasmonic materials, such as metal nanoparticles, leading to the generation of high-energy or "hot electrons", albeit accompanied by photothermal heating or Joule effect. The ability of hot electrons to participate in chemical reactions is one of the key mechanisms, underlying the enhanced photocatalytic activity observed in plasmonic photocatalysis. Interestingly, surface-enhanced Raman scattering (SERS) spectroscopy allows the analysis of chemical reactions driven by hot electrons, as both SERS and hot electrons stem from the decay of SPR and occur at the hot spots. Herein, we propose a highly efficient SERS substrate based on cellulose paper loaded with either Ag nanoplates (Ag NPs) or AgPd hollow nanoplates (AgPd HNPs) for the in situ monitoring of C-C homocoupling reactions. The data analysis allowed us to disentangle the impact of hot electrons and the Joule effect on plasmon-enhanced photocatalysis. Computational simulations revealed an increase in the rate of excitation of hot carriers from single/isolated AgPd HNPs to an in-plane with a vertical stacking assembly, suggesting its promise as a photocatalyst under broadband light. In addition, the results suggest that the incorporation of Pd into an alloy with plasmonic properties may enhance its catalytic performance under light irradiation due to the collection of plasmon-excitation-induced hot electrons. This work has demonstrated the performance-oriented synthesis of hybrid nanostructures, providing a unique route to uncover the mechanism of plasmon-enhanced photocatalysis.

20.
ACS Appl Nano Mater ; 7(1): 498-508, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229662

RESUMO

Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert. Consequently, the analytical assessment of parvalbumin and histamine levels in fish becomes a critical public health safety measure. The multiplex detection of both analytes has emerged as an important issue. The analytical detection of parvalbumin and histamine requires different assays; while the determination of parvalbumin is commonly carried out by enzyme-linked immunosorbent assay, histamine is analyzed by high-performance liquid chromatography. In this study, we present an approach for multiplexing detection and quantification of trace amounts of parvalbumin and histamine in canned fish. This is achieved through a colorimetric and surface-enhanced Raman-scattering-based competitive lateral flow assay (SERS-LFIA) employing plasmonic nanoparticles. Two distinct SERS nanotags tailored for histamine or ß-parvalbumin detection were synthesized. Initially, spherical 50 nm Au@Ag core-shell nanoparticles (Au@Ag NPs) were encoded with either rhodamine B isothiocyanate (RBITC) or malachite green isothiocyanate (MGITC). Subsequently, these nanoparticles were bioconjugated with anti-ß-parvalbumin and antihistamine, forming the basis for our detection and quantification methodology. Additionally, our approach demonstrates the use of SERS-LFIA for the sensitive and multiplexed detection of parvalbumin and histamine on a single test line, paving the way for on-site detection employing portable Raman instruments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA