RESUMO
The area of farming lands affected by increasing soil salinity is growing significantly worldwide. For this reason, breeding works are conducted to improve the salinity tolerance of important crop species. The goal of the present study was to indicate physiological or biochemical parameters characterizing three durum wheat accessions with various tolerance to salinity. The study was carried out on germinating seeds and mature plants of a Polish SMH87 line, an Australian cultivar 'Tamaroi' (salt-sensitive), and the BC5Nax2 line (salt-tolerant) exposed to 0-150 mM NaCl. Germination parameters, electrolyte leakage (EL), and salt susceptibility index were determined in the germinating caryopses, whereas photosynthetic parameters, carbohydrate and phenolic content, antioxidant activity as well as yield were measured in fully developed plants. The parameters that most differentiated the examined accessions in the germination phase were the percentage of germinating seeds (PGS) and germination vigor (Vi). In the fully developed plants, parameters included whether the plants had the maximum efficiency of the water-splitting reaction on the donor side of photosystem II (PSII)-Fv/F0, energy dissipation from PSII-DIo/CSm, and the content of photosynthetic pigments and hydrogen peroxide, which differentiated studied genotypes in terms of salinity tolerance degree. Salinity has a negative impact on grain yield by reducing the number of seeds per spike and the mass of one thousand seeds (MTS), which can be used as the most suitable parameter for determining tolerance to salinity stress. The most salt-tolerant BC5Nax2 line was characterized by the highest PGS, and Vi for NaCl concentration of 100-150 mM, content of chlorophyll a, b, carotenoids, and also MTS at all applied salt concentrations as compared with the other accessions. The most salt-sensitive cv. 'Tamaroi' demonstrated higher H2O2 concentration which proves considerable oxidative damage caused by salinity stress. Mentioned parameters can be helpful for breeders in the selection of genotypes the most resistant to this stress.
Assuntos
Salinidade , Triticum , Austrália , Clorofila A , Genótipo , Peróxido de Hidrogênio , Complexo de Proteína do Fotossistema II , Melhoramento Vegetal , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Triticum/genéticaRESUMO
Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.
Assuntos
Fagopyrum/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteoma , Termotolerância/genética , Eletroforese em Gel Bidimensional , Fagopyrum/embriologia , Fagopyrum/genética , Fagopyrum/crescimento & desenvolvimento , Resposta ao Choque Térmico/genética , Temperatura Alta , Indol-3-Glicerolfosfato Sintase/biossíntese , Indol-3-Glicerolfosfato Sintase/genética , Metionina Adenosiltransferase/biossíntese , Metionina Adenosiltransferase/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Espectrometria de Massas em Tandem , Regulação para CimaRESUMO
Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.
Assuntos
Biomarcadores/metabolismo , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Plântula/fisiologia , Tricotecenos/metabolismo , Triticum/fisiologia , Genótipo , Plântula/microbiologia , Triticum/classificação , Triticum/genética , Triticum/microbiologiaRESUMO
Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.
Assuntos
Fagopyrum/genética , Flores/genética , Reprodução/genética , Sementes/genética , Fagopyrum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Polinização/genética , Estações do Ano , Sementes/crescimento & desenvolvimentoRESUMO
Common buckwheat is a valuable crop, mainly due to the beneficial chemical composition of its seeds. However, buckwheat cultivation is limited because of unstable seed yield. The most important reasons for the low yield include embryo and flower abortion. The aim of this work is to verify whether high temperature affects embryological development in this plant species. The experiment was conducted on plants of a Polish cultivar 'Panda' and strain PA15, in which the percentage of degenerating embryo sacs was previously determined and amounted to 32% and 10%, respectively. The plants were cultivated in phytotronic conditions at 20 °C (control), and 30 °C (thermal stress). The embryological processes and hormonal profiles in flowers at various developmental stages (buds, open flowers, and wilted flowers) and in donor leaves were analyzed in two-month-old plants. Significant effects of thermal stress on the defective development of female gametophytes and hormone content in flowers and leaves were observed. Ovules were much more sensitive to high temperature than pollen grains in both genotypes. Pollen viability remained unaffected at 30 °C in both genotypes. The effect of temperature on female gametophyte development was visible in cv. Panda but not in PA15 buds. A drastic reduction in the number of properly developed embryo sacs was clear in open flowers at 30 °C in both genotypes. A considerable increase in abscisic acid in open flowers ready for fertilization may serve as a signal inducing flower senescence observed in the next few days. Based on embryological analyses and hormone profiles in flowers, we conclude that cv. 'Panda' is more sensitive to thermal stress than strain PA15, mainly due to a much earlier response to thermal stress involving impairment of embryological processes already in the flower buds.
Assuntos
Fagopyrum/embriologia , Fagopyrum/metabolismo , Flores/embriologia , Flores/metabolismo , Temperatura Alta , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/embriologia , Folhas de Planta/metabolismo , Óvulo Vegetal/citologia , Óvulo Vegetal/embriologia , Pólen/embriologiaRESUMO
Seed imbibition under cold temperature is dangerous when dry seeds have relatively low water content. The aim of this study was to investigate germination of 20 lines/cultivars of narrow-leaf lupine at 7 °C (cold) and 13 °C (control) under the influence of smoke water and following seed hydropriming for 3 h at 20 °C. The efficacy of individual treatments was examined with regard to seed protection during low-temperature germination. Based on seed germination, vigour at cold was evaluated four days after sowing by means of hypocotyl length, the studied lines/cultivars were divided into three groups with low, high and very high germination rates. Germination vigour correlated with cell membrane permeability, dehydrogenase activity and abscisic acid (ABA) content and was analysed in the seeds one day after sowing. Gibberellin content did not correlate with germination vigour. The seeds of weakly germinating lines/cultivars had the highest cell permeability and ABA content as well as the lowest amylolytic activity at both studied temperatures. Additionally, the vigour of weakly germinating seeds at 7 °C correlated with dehydrogenase activity. Three-hour hydropriming was the most effective for seed germination under cold due to reduced cell membrane permeability and ABA level. Stimulating effects of smoke water on germination under cold could be explained by enhanced dehydrogenase activity.
Assuntos
Adaptação Fisiológica , Germinação , Lupinus/fisiologia , Ácido Abscísico/farmacologia , Permeabilidade da Membrana Celular , Temperatura Baixa , Giberelinas/metabolismo , Lupinus/metabolismo , ÁguaRESUMO
In this article, the effects of cold on the development of Lupine angustifolius and the possibility of mitigating it, via seed hydropriming or pre-treatment with butenolide (10-6 Mâ»10-4 M), are investigated in two cultivars, differing in their ability to germinate at low temperature. Physiological background of plant development after cold stress was investigated in imbibed seeds. For the first four weeks, the seedlings grew at 7 °C or 13 °C. Seeds well germinating at 7 °C demonstrated higher activity of α-amylase and higher levels of gibberellins, IAA and kinetin. Germination ability at low temperature correlated with dehydrogenase activity and membrane permeability. Seed pre-treatment improved germination at low temperature by decreasing abscisic acid content. Seed hydropriming alleviated cold effects on plant development rate and yield, while butenolide accelerated vegetative development but delayed the generative phase. Potential seed yield may be predicted based on the seed germination vigour and the photosynthetic efficiency measured before flowering.
Assuntos
4-Butirolactona/análogos & derivados , Temperatura Baixa , Lupinus/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Sementes/fisiologia , 4-Butirolactona/farmacologia , Biomassa , Clorofila/metabolismo , Clorofila A , Eletrólitos/metabolismo , Fluorescência , Germinação/efeitos dos fármacos , Cinética , Lupinus/efeitos dos fármacos , Lupinus/enzimologia , Oxirredutases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Temperatura , Fatores de Tempo , alfa-Amilases/metabolismoRESUMO
Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.