Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7894): 542-548, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082418

RESUMO

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.

2.
Phys Rev Lett ; 132(6): 065103, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394600

RESUMO

Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce target gain greater than unity and exceeded the previously obtained conditions needed for ignition by the Lawson criterion. Key elements of the success came from reducing "coast time" (the time duration between the end of the laser pulse and implosion peak compression) and maximizing the internal energy delivered to the "hot spot" (the yield producing part of the fusion fuel). The link between coast time and maximally efficient conversion of kinetic energy into internal energy is explained. The energetics consequences of asymmetry and hydrodynamic-induced mixing were part of high-yield big radius implosion design experimental and design strategy. Herein, it is shown how asymmetry and mixing consolidate into one key relationship. It is shown that mixing distills into a kinetic energy cost similar to the impact of implosion asymmetry, shifting the threshold for ignition to higher implosion kinetic energy-a factor not normally included in most statements of the generalized Lawson criterion, but the key needed modifications clearly emerge.

4.
Occup Med (Lond) ; 73(7): 434-438, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37658781

RESUMO

BACKGROUND: US and Canadian pilots are required to meet medical standards to secure their active flying status, but a subgroup exhibit healthcare avoidance behaviour due to fear of loss of that status. This phenomenon has the potential to impact pilot health, aeromedical screening and aviation safety. No international comparison study of pilot healthcare avoidance currently exists between US and Canadian pilots. AIMS: To compare the rate and subtypes of healthcare avoidance behaviour secondary to fear for loss of flying status between US and Canadian pilots. METHODS: A comparison analysis of data collected during two independent, non-probabilistic, cross-sectional internet surveys including any individual certified to perform flying duties in the USA (US survey) or Canada (Canadian survey). RESULTS: There were 4320 US pilots and 1415 Canadian pilots who completed informed consent and 3765 US pilots and 1405 Canadian pilots were included in the results. There were 56% of US pilots who reported a history of healthcare avoidance behaviour compared to 55% of Canadian pilots (P = 0.578). A multivariable logistic regression that included age, pilot type and gender showed that US pilots were slightly more likely than Canadian pilots to report this behaviour (odds ratio 1.22, 95% confidence interval 1.06-1.4). CONCLUSIONS: Healthcare avoidance behaviour due to fear of loss of flying status has a relatively high prevalence in both US and Canadian pilot populations.

5.
Phys Rev Lett ; 127(12): 125001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597087

RESUMO

Inertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations. Furthermore, a tracer jet from the capsule fill-tube perturbation that is entrained by the hot-spot flow confirms the average flow speeds deduced from neutron spectroscopy.

6.
Phys Rev Lett ; 124(14): 145001, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338978

RESUMO

The impact to fusion energy production due to the radiative loss from a localized mix in inertial confinement implosions using high density carbon capsule targets has been quantified. The radiative loss from the localized mix and local cooling of the reacting plasma conditions was quantified using neutron and x-ray images to reconstruct the hot spot conditions during thermonuclear burn. Such localized features arise from ablator material that is injected into the hot spot from the Rayleigh-Taylor growth of capsule surface perturbations, particularly the tube used to fill the capsule with deuterium and tritium fuel. Observations, consistent with analytic estimates, show the degradation to fusion energy production to be linearly proportional to the fraction of the total emission that is associated with injected ablator material and that this radiative loss has been the primary source of variations, of up to 1.6 times, in observed fusion energy production. Reducing the fill tube diameter has increased the ignition metric χ_{no α} from 0.49 to 0.72, 92% of that required to achieve a burning hot spot.

7.
Nature ; 506(7488): 343-8, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24522535

RESUMO

Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

8.
Phys Rev Lett ; 122(15): 155002, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31050520

RESUMO

The rapid heating of a thin titanium foil by a high intensity, subpicosecond laser is studied by using a 2D narrow-band x-ray imaging and x-ray spectroscopy. A novel monochromatic imaging diagnostic tuned to 4.51 keV Ti Kα was used to successfully visualize a significantly ionized area (⟨Z⟩>17±1) of the solid density plasma to be within a ∼35 µm diameter spot in the transverse direction and 2 µm in depth. The measurements and a 2D collisional particle-in-cell simulation reveal that, in the fast isochoric heating of solid foil by an intense laser light, such a high ionization state in solid titanium is achieved by thermal diffusion from the hot preplasma in a few picoseconds after the pulse ends. The shift of Kα and formation of a missing Kα cannot be explained with the present atomic physics model. The measured Kα image is reproduced only when a phenomenological model for the Kα shift with a threshold ionization of ⟨Z⟩=17 is included. This work reveals how the ionization state and electron temperature of the isochorically heated nonequilibrium plasma are independently increased.

9.
Phys Rev Lett ; 121(8): 085001, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192614

RESUMO

Accurate measurement of the thermal temperature in inertially confined fusion plasmas is essential for characterizing ignition performance and validating the basic physics understanding of the stagnation conditions. We present experimental results from cryogenic deuterium-tritium implosions on the National Ignition Facility using a differential filter spectrometer designed to measure the thermal electron temperature from x-ray continuum emission from the stagnated plasma. Furthermore, electron temperature measurements, used in conjunction with the Doppler-broadened DT neutron spectra, allow one to infer the partition of energy in the hot spot between internal energy and unconverted kinetic energy.

10.
Phys Rev Lett ; 121(13): 135001, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312055

RESUMO

To reach the pressures and densities required for ignition, it may be necessary to develop an approach to design that makes it easier for simulations to guide experiments. Here, we report on a new short-pulse inertial confinement fusion platform that is specifically designed to be more predictable. The platform has demonstrated 99%+0.5% laser coupling into the hohlraum, high implosion velocity (411 km/s), high hotspot pressure (220+60 Gbar), and high cold fuel areal density compression ratio (>400), while maintaining controlled implosion symmetry, providing a promising new physics platform to study ignition physics.

11.
Phys Rev Lett ; 114(9): 095004, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793822

RESUMO

Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

12.
Phys Rev Lett ; 115(5): 055001, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274424

RESUMO

We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

13.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382681

RESUMO

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

14.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910132

RESUMO

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

15.
Phys Rev Lett ; 112(5): 055001, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580603

RESUMO

This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300 eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063) g/cm2, and the measured Tion was (4.2±0.16) keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating.

16.
Phys Rev Lett ; 112(5): 055002, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580604

RESUMO

The National Ignition Campaign's [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] point design implosion has achieved DT neutron yields of 7.5×10(14) neutrons, inferred stagnation pressures of 103 Gbar, and inferred areal densities (ρR) of 0.90 g/cm2 (shot N111215), values that are lower than 1D expectations by factors of 10×, 3.3×, and 1.5×, respectively. In this Letter, we present the design basis for an inertial confinement fusion capsule using an alternate indirect-drive pulse shape that is less sensitive to issues that may be responsible for this lower than expected performance. This new implosion features a higher radiation temperature in the "foot" of the pulse, three-shock pulse shape resulting in an implosion that has less sensitivity to the predicted ionization state of carbon, modestly lower convergence ratio, and significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this new design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. Early experimental results support our assertions since as of this Letter, a high-foot implosion has obtained a record DT yield of 2.4×10(15) neutrons (within ∼70% of 1D simulation) with fuel ρR=0.84 g/cm2 and an estimated ∼1/3 of the yield coming from α-particle self-heating.

17.
Nat Commun ; 15(1): 2975, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582938

RESUMO

Indirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1. Analysis shows that including these three corrections alone accounts for the measured fusion performance variability in the two highest performing experimental campaigns on the NIF to within error. Here we quantify the performance sensitivity to mode-2 symmetry in the burning plasma regime and apply the results, in the form of an empirical correction to a 1D performance model. Furthermore, we find the sensitivity to mode-2 determined through a series of integrated 2D radiation hydrodynamic simulations to be consistent with the experimentally determined sensitivity only when including alpha-heating.

18.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491565

RESUMO

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

19.
Phys Rev Lett ; 111(24): 245001, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483668

RESUMO

We show that the interaction of relativistic-intensity, picosecond laser pulses with solid targets is affected by the reflected light through the strong currents and 10(4) T magnetic fields it produces. Three-dimensional particle-in-cell simulations, with the axisymmetry broken by a small angle of incidence, show that these magnetic fields deflect the laser-accelerated electrons away from the incident laser axis. This directly impacts the interpretation of electron divergence and directionality in applications such as laser-driven ion acceleration or fast-ignition inertial fusion.

20.
Phys Rev Lett ; 110(2): 025001, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383907

RESUMO

The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 10(20) W/cm2) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu Kα spot size) using a high- or mid-Z (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-Z transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA