Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(11): e112590, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912146

RESUMO

During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Homeodomínio/genética , Proteínas Supressoras de Tumor/genética , Células Endoteliais , Células Cultivadas , Diferenciação Celular , Linfangiogênese/genética , Fatores de Transcrição/genética , Análise de Célula Única
2.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314606

RESUMO

The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.


Assuntos
Adesões Focais , Talina , Animais , Adesões Focais/metabolismo , Talina/genética , Talina/metabolismo , Actinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Integrinas/genética , Integrinas/metabolismo , Adesão Celular
3.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597309

RESUMO

The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.


Assuntos
Arritmias Cardíacas/genética , Frequência Cardíaca/genética , Proteínas de Membrana/fisiologia , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cálcio/metabolismo , Sequência Conservada , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Coração/embriologia , Coração/fisiopatologia , Transporte de Íons , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Organogênese/genética , Periodicidade , Potássio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Development ; 147(18)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839180

RESUMO

The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprouts from cardinal veins followed by migration and proliferation to colonise embryonic tissues. Although much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells, alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development.


Assuntos
Movimento Celular/fisiologia , Colágeno Tipo II/metabolismo , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Peixe-Zebra/metabolismo , Animais , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Linfangiogênese/fisiologia , Morfogênese/fisiologia , Veias/metabolismo
5.
Adv Exp Med Biol ; 1397: 95-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36522595

RESUMO

Cadaveric dissection is widely used in anatomy teaching worldwide. This method develops anatomical knowledge and practical dissection skills, as well as communication and team working. At the School of Anatomy, University of Bristol, two of our undergraduate units depend on dissection as a teaching tool.Social distancing guidelines brought about by COVID-19 brought challenges and meant it was not possible for all students to be present around a cadaver simultaneously. We adapted with secure, two-way live streaming, facilitated by ceiling-mounted cameras.Our units utilised the technology in slightly different ways. In a larger cohort, students were not able to attend the dissection room simultaneously and 2-4 students from each group attended, with the remainder (6-8 students) attending via Zoom. In the smaller cohort, all students attended, though only two students could be present around the cadaver, with Zoom used to stream the dissection to those distanced around the room. Those present narrated and ensured visibility of the dissection, whilst posing questions to those at home. The home group provided feedback, generated discussion, and conducted research.This chapter reflects on our experiences using this innovative teaching method. It was a valuable alternative to being in person. Whilst students might have spent less time in the dissection room, their dissection time equalled or was greater than pre-pandemic. Students developed digital confidence and built cohorts, and whilst we reflect on the need for effective communication and digital equity, we offer our best practice and solutions.Whilst in-person teaching has resumed in 2021-2022, investment in this technology enables us to rapidly pivot to a reduced in-person, or an entirely online delivery where required, and we are confident that our delivery will be effective in either case. There are also exciting opportunities for new forms of delivery as well as national and international collaborations.


Assuntos
COVID-19 , Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Currículo , Aprendizagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Cadáver
6.
Genes Dev ; 29(15): 1618-30, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253536

RESUMO

The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc-SoxF-Mafba pathway in lymphatic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese/genética , Vasos Linfáticos/embriologia , Fator de Transcrição MafB/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Movimento Celular/genética , Embrião não Mamífero , Fator de Transcrição MafB/genética , Mutação , Proteínas do Tecido Nervoso/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
7.
Am J Med Genet A ; 182(1): 189-194, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31633297

RESUMO

Hennekam lymphangiectasia-lymphedema syndrome is an autosomal recessive disorder characterized by congenital lymphedema, intestinal lymphangiectasia, facial dysmorphism, and variable intellectual disability. Known disease genes include CCBE1, FAT4, and ADAMTS3. In a patient with clinically diagnosed Hennekam syndrome but without mutations or copy-number changes in the three known disease genes, we identified a homozygous single-exon deletion affecting FBXL7. Specifically, exon 3, which encodes the F-box domain and several leucine-rich repeats of FBXL7, is eliminated. Our analyses of databases representing >100,000 control individuals failed to identify biallelic loss-of-function variants in FBXL7. Published studies in Drosophila indicate Fbxl7 interacts with Fat, of which human FAT4 is an ortholog, and mutation of either gene yields similar morphological consequences. These data suggest that FBXL7 may be the fourth gene for Hennekam syndrome, acting via a shared pathway with FAT4.


Assuntos
Anormalidades Craniofaciais/genética , Proteínas F-Box/genética , Predisposição Genética para Doença , Linfangiectasia Intestinal/genética , Linfedema/genética , Proteínas ADAMTS/genética , Alelos , Animais , Pré-Escolar , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/patologia , Drosophila melanogaster/genética , Genótipo , Homozigoto , Humanos , Linfangiectasia Intestinal/complicações , Linfangiectasia Intestinal/patologia , Linfedema/complicações , Linfedema/patologia , Masculino , Técnicas de Diagnóstico Molecular/métodos , Mutação/genética , Linhagem , Fenótipo , Pró-Colágeno N-Endopeptidase/genética
8.
FASEB J ; 29(5): 1999-2009, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667221

RESUMO

CEP55 was initially described as a centrosome- and midbody-associated protein and a key mediator of cytokinesis. More recently, it has been implicated in PI3K/AKT pathway activation via an interaction with the catalytic subunit of PI3K. However, its role in embryonic development is unknown. Here we describe a cep55 nonsense mutant zebrafish with which we can study the in vivo physiologic role of Cep55. Homozygous mutants underwent extensive apoptosis by 24 hours postfertilization (hpf) concomitant with cell cycle defects, and heterozygous carriers were indistinguishable from their wild-type siblings. A similar phenotype was also observed in zebrafish injected with a cep55 morpholino, suggesting the mutant is a cep55 loss-of-function model. Further analysis revealed that Akt was destabilized in the homozygous mutants, which partially phenocopied Akt1 and Akt2 knockdown. Expression of either constitutively activated PIK3CA or AKT1 could partially rescue the homozygous mutants. Consistent with a role for Cep55 in regulation of Akt stability, treatment with proteasome inhibitor, MG132, partially rescued the homozygous mutants. Taken together, these results provide the first description of Cep55 in development and underline the importance of Cep55 in the regulation of Pi3k/Akt pathway and in particular Akt stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Western Blotting , Ciclo Celular , Proteínas de Ciclo Celular/genética , Citocinese/fisiologia , Imunofluorescência , Heterozigoto , Homozigoto , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/genética
9.
Development ; 138(19): 4193-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21896629

RESUMO

The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.


Assuntos
Coxins Endocárdicos/embriologia , Coxins Endocárdicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Proteínas com Domínio T/genética , Alelos , Animais , Proteína Morfogenética Óssea 4/metabolismo , Feminino , Cardiopatias Congênitas/patologia , Masculino , Meiose , Proteínas de Membrana/fisiologia , Camundongos , Modelos Biológicos , Mutagênese , Mutação , Peixe-Zebra
10.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38091997

RESUMO

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/metabolismo , Diferenciação Celular/genética , Proliferação de Células
11.
Drug Metab Dispos ; 39(1): 77-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20870783

RESUMO

Arylamine N-acetyltransferase-1 (NAT1) has been associated with disorders involving folate metabolism, such as spina bifida, as well as numerous human cancers. As a result, the transcriptional and post-transcriptional regulation of NAT1 activity has been extensively studied. However, little work has been reported on the epigenetic control of NAT1 expression. Here, we demonstrate that the histone deacetylase inhibitor trichostatin A (TSA) increases NAT1 activity in human cancer cells by increasing transcription from the proximal promoter NATb. A specific Sp1 binding site was identified as essential for optimal induction of NAT1 by TSA. However, TSA did not increase the expression of Sp1 in HeLa cells. Instead, TSA increased the acetylation of histones associated with the NATb promoter. This allowed recruitment of Sp1 to the promoter along with acetylated histones. We propose that NAT1 transcription is partially repressed by the local chromatin condensation in the vicinity of NATb and that histone deacetylase inhibition leads to up-regulation of NAT1 expression via a direct change in chromatin conformation.


Assuntos
Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Cromatina/metabolismo , Regulação Enzimológica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Acetilação , Células HeLa , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas , Regulação para Cima
12.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003110

RESUMO

The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.


Assuntos
Células Endoteliais/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Animais , Células Cultivadas , Sistema de Sinalização das MAP Quinases/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
13.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750583

RESUMO

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Células Endoteliais/enzimologia , Linfangiogênese , Vasos Linfáticos/enzimologia , RNA Ribossômico/biossíntese , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Vasos Linfáticos/embriologia , RNA Ribossômico/genética , Ribossomos/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Cell Rep ; 28(8): 2023-2036.e4, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433980

RESUMO

Lymphatic vascular development establishes embryonic and adult tissue fluid balance and is integral in disease. In diverse vertebrate organs, lymphatic vessels display organotypic function and develop in an organ-specific manner. In all settings, developmental lymphangiogenesis is considered driven by vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3), whereas a role for VEGFR2 remains to be fully explored. Here, we define the zebrafish Vegf/Vegfr code in receptor binding studies. We find that while Vegfd directs craniofacial lymphangiogenesis, it binds Kdr (a VEGFR2 homolog) but surprisingly, unlike in mammals, does not bind Flt4 (VEGFR3). Epistatic analyses and characterization of a kdr mutant confirm receptor-binding analyses, demonstrating that Kdr is indispensible for rostral craniofacial lymphangiogenesis, but not caudal trunk lymphangiogenesis, in which Flt4 is central. We further demonstrate an unexpected yet essential role for Kdr in inducing lymphatic endothelial cell fate. This work reveals evolutionary divergence in the Vegf/Vegfr code that uncovers spatially restricted mechanisms of developmental lymphangiogenesis.


Assuntos
Células Endoteliais/metabolismo , Evolução Molecular , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Ligantes , Camundongos , Ligação Proteica , Proteólise , Reprodutibilidade dos Testes , Fator C de Crescimento do Endotélio Vascular/química , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
15.
Dev Cell ; 49(2): 279-292.e5, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31014480

RESUMO

The correct assignment of cell fate within fields of multipotent progenitors is essential for accurate tissue diversification. The first lymphatic vessels arise from pre-existing veins after venous endothelial cells become specified as lymphatic progenitors. Prox1 specifies lymphatic fate and labels these progenitors; however, the mechanisms restricting Prox1 expression and limiting the progenitor pool remain unknown. We identified a zebrafish mutant that displayed premature, expanded, and prolonged lymphatic specification. The gene responsible encodes the regulator of alternative splicing, Nova2. In zebrafish and human endothelial cells, Nova2 selectively regulates pre-mRNA splicing for components of signaling pathways and phosphoproteins. Nova2-deficient endothelial cells display increased Mapk/Erk signaling, and Prox1 expression is dynamically controlled by Erk signaling. We identify a mechanism whereby Nova2-regulated splicing constrains Erk signaling, thus limiting lymphatic progenitor cell specification. This identifies the capacity of a factor that tunes mRNA splicing to control assignment of cell fate during vascular differentiation.


Assuntos
Vasos Linfáticos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Diferenciação Celular , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Linfangiogênese , Vasos Linfáticos/citologia , Masculino , Antígeno Neuro-Oncológico Ventral , Proteínas Supressoras de Tumor/metabolismo , Veias/citologia , Veias/metabolismo , Peixe-Zebra
16.
Biol Open ; 6(1): 125-131, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27895053

RESUMO

The advent of genome editing has significantly altered genetic research, including research using the zebrafish model. To better understand the selectivity of the commonly used CRISPR/Cas9 system, we investigated single base pair mismatches in target sites and examined how they affect genome editing in the zebrafish model. Using two different zebrafish strains that have been deep sequenced, CRISPR/Cas9 target sites containing polymorphisms between the two strains were identified. These strains were crossed (creating heterozygotes at polymorphic sites) and CRISPR/Cas9 complexes that perfectly complement one strain injected. Sequencing of targeted sites showed biased, allele-specific editing for the perfectly complementary sequence in the majority of cases (14/19). To test utility, we examined whether phenotypes generated by F0 injection could be internally controlled with such polymorphisms. Targeting of genes bmp7a and chordin showed reduction in the frequency of phenotypes in injected 'heterozygotes' compared with injecting the strain with perfect complementarity. Next, injecting CRISPR/Cas9 complexes targeting two separate sites created deletions, but deletions were biased to selected chromosomes when one CRISPR/Cas9 target contained a polymorphism. Finally, integration of loxP sequences occurred preferentially in alleles with perfect complementarity. These experiments demonstrate that single nucleotide polymorphisms (SNPs) present throughout the genome can be utilised to increase the efficiency of in cis genome editing using CRISPR/Cas9 in the zebrafish model.

17.
Nat Commun ; 8(1): 1402, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29123087

RESUMO

Forces play diverse roles in vascular development, homeostasis and disease. VE-cadherin at endothelial cell-cell junctions links the contractile acto-myosin cytoskeletons of adjacent cells, serving as a tension-transducer. To explore tensile changes across VE-cadherin in live zebrafish, we tailored an optical biosensor approach, originally established in vitro. We validate localization and function of a VE-cadherin tension sensor (TS) in vivo. Changes in tension across VE-cadherin observed using ratio-metric or lifetime FRET measurements reflect acto-myosin contractility within endothelial cells. Furthermore, we apply the TS to reveal biologically relevant changes in VE-cadherin tension that occur as the dorsal aorta matures and upon genetic and chemical perturbations during embryonic development.


Assuntos
Antígenos CD/fisiologia , Caderinas/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Actomiosina/fisiologia , Animais , Antígenos CD/genética , Aorta/embriologia , Fenômenos Biomecânicos , Caderinas/genética , Transferência Ressonante de Energia de Fluorescência , Junções Intercelulares/fisiologia , Mecanotransdução Celular/fisiologia , Imagem Molecular , Mutação , Neovascularização Fisiológica/genética , Resistência à Tração/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Nat Neurosci ; 20(6): 774-783, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459441

RESUMO

Mural cells of the vertebrate brain maintain vascular integrity and function, play roles in stroke and are involved in maintenance of neural stem cells. However, the origins, diversity and roles of mural cells remain to be fully understood. Using transgenic zebrafish, we identified a population of isolated mural lymphatic endothelial cells surrounding meningeal blood vessels. These meningeal mural lymphatic endothelial cells (muLECs) express lymphatic endothelial cell markers and form by sprouting from blood vessels. In larvae, muLECs develop from a lymphatic endothelial loop in the midbrain into a dispersed, nonlumenized mural lineage. muLEC development requires normal signaling through the Vegfc-Vegfd-Ccbe1-Vegfr3 pathway. Mature muLECs produce vascular growth factors and accumulate low-density lipoproteins from the bloodstream. We find that muLECs are essential for normal meningeal vascularization. Together, these data identify an unexpected lymphatic lineage and developmental mechanism necessary for establishing normal meningeal blood vasculature.


Assuntos
Células Endoteliais/fisiologia , Meninges/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Fatores de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Lipoproteínas LDL/metabolismo , Masculino , Meninges/crescimento & desenvolvimento , Meninges/metabolismo , Meninges/fisiologia , Transdução de Sinais/fisiologia , Fatores de Crescimento do Endotélio Vascular/biossíntese , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Sci Rep ; 5: 17786, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26633804

RESUMO

We present global and regional correlations between whole-rock values of Sr/Y and La/Yb and crustal thickness for intermediate rocks from modern subduction-related magmatic arcs formed around the Pacific. These correlations bolster earlier ideas that various geochemical parameters can be used to track changes of crustal thickness through time in ancient subduction systems. Inferred crustal thicknesses using our proposed empirical fits are consistent with independent geologic constraints for the Cenozoic evolution of the central Andes, as well as various Mesozoic magmatic arc segments currently exposed in the Coast Mountains, British Columbia, and the Sierra Nevada and Mojave-Transverse Range regions of California. We propose that these geochemical parameters can be used, when averaged over the typical lifetimes and spatial footprints of composite volcanoes and their intrusive equivalents to infer crustal thickness changes over time in ancient orogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA