Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226418

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Assuntos
Antineoplásicos , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo
2.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480600

RESUMO

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Automação
3.
Metabolomics ; 20(1): 16, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267770

RESUMO

INTRODUCTION: Meta-analyses across diverse independent studies provide improved confidence in results. However, within the context of metabolomic epidemiology, meta-analysis investigations are complicated by differences in study design, data acquisition, and other factors that may impact reproducibility. OBJECTIVE: The objective of this study was to identify maternal blood metabolites during pregnancy (> 24 gestational weeks) related to offspring body mass index (BMI) at age two years through a meta-analysis framework. METHODS: We used adjusted linear regression summary statistics from three cohorts (total N = 1012 mother-child pairs) participating in the NIH Environmental influences on Child Health Outcomes (ECHO) Program. We applied a random-effects meta-analysis framework to regression results and adjusted by false discovery rate (FDR) using the Benjamini-Hochberg procedure. RESULTS: Only 20 metabolites were detected in all three cohorts, with an additional 127 metabolites detected in two of three cohorts. Of these 147, 6 maternal metabolites were nominally associated (P < 0.05) with offspring BMI z-scores at age 2 years in a meta-analytic framework including at least two studies: arabinose (Coefmeta = 0.40 [95% CI 0.10,0.70], Pmeta = 9.7 × 10-3), guanidinoacetate (Coefmeta = - 0.28 [- 0.54, - 0.02], Pmeta = 0.033), 3-ureidopropionate (Coefmeta = 0.22 [0.017,0.41], Pmeta = 0.033), 1-methylhistidine (Coefmeta = - 0.18 [- 0.33, - 0.04], Pmeta = 0.011), serine (Coefmeta = - 0.18 [- 0.36, - 0.01], Pmeta = 0.034), and lysine (Coefmeta = - 0.16 [- 0.32, - 0.01], Pmeta = 0.044). No associations were robust to multiple testing correction. CONCLUSIONS: Despite including three cohorts with large sample sizes (N > 100), we failed to identify significant metabolite associations after FDR correction. Our investigation demonstrates difficulties in applying epidemiological meta-analysis to clinical metabolomics, emphasizes challenges to reproducibility, and highlights the need for standardized best practices in metabolomic epidemiology.


Assuntos
Lisina , Metabolômica , Criança , Feminino , Gravidez , Humanos , Pré-Escolar , Índice de Massa Corporal , Reprodutibilidade dos Testes , Modelos Lineares
4.
Pediatr Res ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509226

RESUMO

BACKGROUND: Gut-derived metabolites, products of microbial and host co-metabolism, may inform mechanisms underlying children's neurodevelopment. We investigated whether infant fecal metabolites were related to toddler social behavior. METHODS: Stool samples collected from 6-week-olds (n = 86) and 1-year-olds (n = 209) in the New Hampshire Birth Cohort Study (NHBCS) were analyzed using nuclear magnetic resonance spectroscopy metabolomics. Autism-related behavior in 3-year-olds was assessed by caregivers using the Social Responsiveness Scale (SRS-2). To assess the association between metabolites and SRS-2 scores, we used a traditional single-metabolite approach, quantitative metabolite set enrichment (QEA), and self-organizing maps (SOMs). RESULTS: Using a single-metabolite approach and QEA, no individual fecal metabolite or metabolite set at either age was associated with SRS-2 scores. Using the SOM method, fecal metabolites of six-week-olds organized into four profiles, which were unrelated to SRS-2 scores. In 1-year-olds, one of twelve fecal metabolite profiles was associated with fewer autism-related behaviors, with SRS-2 scores 3.4 (95%CI: -7, 0.2) points lower than the referent group. This profile had higher concentrations of lactate and lower concentrations of short chain fatty acids than the reference. CONCLUSIONS: We uncovered metabolic profiles in infant stool associated with subsequent social behavior, highlighting one potential mechanism by which gut bacteria may influence neurobehavior. IMPACT: Differences in host and microbial metabolism may explain variability in neurobehavioral phenotypes, but prior studies do not have consistent results. We applied three statistical techniques to explore fecal metabolite differences related to social behavior, including self-organizing maps (SOMs), a novel machine learning algorithm. A 1-year-old fecal metabolite pattern characterized by high lactate and low short-chain fatty acid concentrations, identified using SOMs, was associated with social behavior less indicative of autism spectrum disorder. Our findings suggest that social behavior may be related to metabolite profiles and that future studies may uncover novel findings by applying the SOM algorithm.

5.
Biostatistics ; 23(3): 926-948, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33720330

RESUMO

In light of the low signal-to-noise nature of many large biological data sets, we propose a novel method to learn the structure of association networks using Gaussian graphical models combined with prior knowledge. Our strategy includes two parts. In the first part, we propose a model selection criterion called structural Bayesian information criterion, in which the prior structure is modeled and incorporated into Bayesian information criterion. It is shown that the popular extended Bayesian information criterion is a special case of structural Bayesian information criterion. In the second part, we propose a two-step algorithm to construct the candidate model pool. The algorithm is data-driven and the prior structure is embedded into the candidate model automatically. Theoretical investigation shows that under some mild conditions structural Bayesian information criterion is a consistent model selection criterion for high-dimensional Gaussian graphical model. Simulation studies validate the superiority of the proposed algorithm over the existing ones and show the robustness to the model misspecification. Application to relative concentration data from infant feces collected from subjects enrolled in a large molecular epidemiological cohort study validates that metabolic pathway involvement is a statistically significant factor for the conditional dependence between metabolites. Furthermore, new relationships among metabolites are discovered which can not be identified by the conventional methods of pathway analysis. Some of them have been widely recognized in biological literature.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Teorema de Bayes , Estudos de Coortes , Perfilação da Expressão Gênica/métodos , Humanos , Distribuição Normal
6.
Part Fibre Toxicol ; 19(1): 3, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986857

RESUMO

BACKGROUND: Nanoparticles (NPs) are increasingly incorporated in everyday products. To investigate the effects of early life exposure to orally ingested TiO2 NP, male and female Sprague-Dawley rat pups received four consecutive daily doses of 10 mg/kg body weight TiO2 NP (diameter: 21 ± 5 nm) or vehicle control (water) by gavage at three different pre-weaning ages: postnatal day (PND) 2-5, PND 7-10, or PND 17-20. Cardiac assessment and basic neurobehavioral tests (locomotor activity, rotarod, and acoustic startle) were conducted on PND 20. Pups were sacrificed at PND 21. Select tissues were collected, weighed, processed for neurotransmitter and metabolomics analyses. RESULTS: Heart rate was found to be significantly decreased in female pups when dosed between PND 7-10 and PND 17-20. Females dosed between PND 2-5 showed decrease acoustic startle response and when dosed between PND 7-10 showed decreased performance in the rotarod test and increased locomotor activity. Male pups dosed between PND 17-20 showed decreased locomotor activity. The concentrations of neurotransmitters and related metabolites in brain tissue and the metabolomic profile of plasma were impacted by TiO2 NP administration for all dose groups. Metabolomic pathways perturbed by TiO2 NP administration included pathways involved in amino acid and lipid metabolism. CONCLUSION: Oral administration of TiO2 NP to rat pups impacted basic cardiac and neurobehavioral performance, neurotransmitters and related metabolites concentrations in brain tissue, and the biochemical profiles of plasma. The findings suggested that female pups were more likely to experience adverse outcome following early life exposure to oral TiO2 NP than male pups. Collectively the data from this exploratory study suggest oral administration of TiO2 NP cause adverse biological effects in an age- and sex-related manner, emphasizing the need to understand the short- and long-term effects of early life exposure to TiO2 NP.


Assuntos
Nanopartículas , Reflexo de Sobressalto , Administração Oral , Animais , Feminino , Masculino , Nanopartículas/toxicidade , Ratos , Ratos Sprague-Dawley , Titânio
7.
J Appl Toxicol ; 42(3): 409-422, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34569639

RESUMO

This study was conducted to investigate the influence of outer diameter (OD) and length (L) of multiwalled carbon nanotubes (MWCNTs) on biodistribution and the perturbation of endogenous metabolite profiles. Three different-sized carboxylated MWCNTs (NIEHS-12-2: L 0.5-2 µm, OD 10-20 nm, NIEHS-13-2: L 0.5-2 µm, OD 30-50 nm, and NIEHS-14-2: L 10-30 µm, OD 10-20 nm) in water were administered to female Sprague-Dawley rats as a single intravenous dose of 1 mg/kg MWCNTs. Biodistribution in liver, lung, spleen, and lymph nodes was evaluated in tissue sections at 1 and 7 days' post-dosing using enhanced darkfield microscopy and hyperspectral imaging. Nuclear magnetic resonance (NMR) analysis was used for biochemical profiling and pathway mapping of endogenous metabolites in urine collected at 24-h intervals prior to dosing, at Day 1 and Day 7. At Day 1 and Day 7, all three MWCNTs were observed in liver. NIEHS-12-2 was observed in spleen, whereas NIEHS-13-2 and NIEHS-14-2 were not. All three MWCNTs were observed in lymph nodes and lung at Day 7. The urinary biochemical profile showed the highest positive fold change (FC) at Day 7 for the metabolites acetate, alanine, and lactate, whereas 1-methylnicotinamide, 2-oxoglutarate, and hippurate had some of the lowest FCs for all three MWCNTs. This study demonstrates that the observed tissue location of MWCNTs is size dependent. Overlaps in the perturbation of endogenous metabolite profiles were found regardless of their size, and the biochemical responses were more profound at Day 7 compared with Day 1, indicating a delayed biological response to MWCNTs.


Assuntos
Nanotubos de Carbono/efeitos adversos , Urina/química , Administração Intravenosa , Animais , Feminino , Nanotubos de Carbono/química , Ratos , Distribuição Tecidual
8.
BMC Microbiol ; 21(1): 238, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454437

RESUMO

BACKGROUND: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. RESULTS: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: - 5.06% -- 6 weeks; - 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344-6 weeks; 0.265-12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. CONCLUSIONS: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes.


Assuntos
Bactérias/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Metaboloma , Bactérias/classificação , Bactérias/isolamento & purificação , Coorte de Nascimento , Feminino , Humanos , Lactente , Aprendizado de Máquina , Masculino , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Environ Sci Technol ; 51(1): 625-633, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27997141

RESUMO

Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.


Assuntos
Arsênio , Metabolômica , Arsenicais , Exposição Ambiental , Feminino , Humanos , Recém-Nascido , México , Gravidez
10.
Pediatr Nephrol ; 32(1): 151-161, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27435284

RESUMO

BACKGROUND: Acute kidney injury (AKI) staging has been developed in the adult and pediatric populations, but these do not yet exist for the neonatal population. Metabolomics was utilized to uncover biomarkers of normal and AKI-associated renal function in preterm infants. The study comprised 20 preterm infants with an AKI diagnosis who were matched by gestational age and gender to 20 infants without an AKI diagnosis. METHODS: Urine samples from pre-term newborn infants collected on day 2 of life were analyzed using broad-spectrum nuclear magnetic resonance (NMR) metabolomics. Multivariate analysis methods were used to identify metabolite profiles that differentiated AKI and no AKI, and to identify a metabolomics profile correlating with gestational age in infants with and without AKI. RESULTS: There was a clear distinction between the AKI and no-AKI profiles. Two previously identified biomarkers of AKI, hippurate and homovanillate, differentiated AKI from no-AKI profiles. Pathway analysis revealed similarities to cholinergic neurons, prenatal nicotine exposure on pancreatic ß cells, and amitraz-induced inhibition of insulin secretion. Additionally, a pH difference was noted. Both pH and the metabolites were found to be associated with AKI; however, only the metabotype was a significant predictor of AKI. Pathways for the no-AKI group that correlated uniquely with gestational age included aminoacyl-t-RNA biosynthesis, whereas pathways in the AKI group yielded potential metabolite changes in pyruvate metabolism. CONCLUSIONS: Metabolomics was able to differentiate the urinary profiles of neonates with and without an AKI diagnosis and metabolic developmental profiles correlated with gestational age. Further studies in larger cohorts are needed to validate these results.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Rim/crescimento & desenvolvimento , Rim/metabolismo , Injúria Renal Aguda/urina , Biomarcadores/urina , Estudos de Casos e Controles , Feminino , Idade Gestacional , Hipuratos/urina , Ácido Homovanílico/urina , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido , Recém-Nascido Prematuro , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Estudos Prospectivos , RNA de Transferência Aminoácido-Específico/metabolismo
11.
J Appl Toxicol ; 37(5): 530-544, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27696470

RESUMO

Few investigations have been conducted on the disposition and fate of silver nanoparticles (AgNP) in pregnancy. The distribution of a single dose of polyvinylpyrrolidone (PVP)-stabilized AgNP was investigated in pregnant rats. Two sizes of AgNP, 20 and 110 nm, and silver acetate (AgAc) were used to investigate the role of AgNP diameter and particle dissolution in tissue distribution, internal dose and persistence. Dams were administered AgNP or AgAc intravenously (i.v.) (1 mg kg-1 ) or by gavage (p.o.) (10 mg kg-1 ), or vehicle alone, on gestation day 18 and euthanized at 24 or 48 h post-exposure. The silver concentration in tissues was measured using inductively-coupled plasma mass spectrometry. The distribution of silver in dams was influenced by route of administration and AgNP size. The highest concentration of silver (µg Ag g-1 tissue) at 48 h was found in the spleen for i.v. administered AgNP, and in the lungs for AgAc. At 48 h after p.o. administration of AgNP, the highest concentration was measured in the cecum and large intestine, and for AgAc in the placenta. Silver was detected in placenta and fetuses for all groups. Markers of cardiovascular injury, oxidative stress marker, cytokines and chemokines were not significantly elevated in exposed dams compared to vehicle-dosed control. NMR metabolomics analysis of urine indicated that AgNP and AgAc exposure impact the carbohydrate, and amino acid metabolism. This study demonstrates that silver crosses the placenta and is transferred to the fetus regardless of the form of silver. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/urina , Acetatos/farmacocinética , Acetatos/toxicidade , Administração Intravenosa , Administração Oral , Adulto , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , Feminino , Feto/metabolismo , Humanos , Troca Materno-Fetal , Metabolômica , Nanopartículas Metálicas/administração & dosagem , Estresse Oxidativo , Tamanho da Partícula , Placenta/metabolismo , Gravidez , Prata/administração & dosagem , Compostos de Prata/farmacocinética , Compostos de Prata/toxicidade , Distribuição Tecidual
12.
J Proteome Res ; 15(9): 3225-40, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27447733

RESUMO

To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.


Assuntos
Metabolismo/efeitos dos fármacos , Metabolômica/métodos , Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Feminino , Hormônios/farmacologia , Humanos , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Paclitaxel/uso terapêutico , Fenobarbital , Neoplasias de Mama Triplo Negativas/metabolismo
13.
FASEB J ; 29(3): 1043-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25466902

RESUMO

Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis.


Assuntos
Hepatócitos/efeitos dos fármacos , Inflamação/prevenção & controle , Cirrose Hepática/prevenção & controle , Microbiota , Substâncias Protetoras , Transdução de Sinais/efeitos dos fármacos , Tioacetamida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Modelos Animais de Doenças , Hepatócitos/citologia , Hepatócitos/microbiologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/induzido quimicamente , Inflamação/microbiologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Biomed Microdevices ; 18(3): 51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27231016

RESUMO

Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.


Assuntos
Infecções por Campylobacter/diagnóstico , Campylobacter jejuni/patogenicidade , Metabolômica , Microfluídica/instrumentação , Aderência Bacteriana , Células CACO-2 , Humanos
15.
J Appl Toxicol ; 35(12): 1438-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26081520

RESUMO

A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk.


Assuntos
Fulerenos/farmacocinética , Lactação , Exposição Materna , Troca Materno-Fetal , Leite/química , Animais , Biomarcadores/análise , Radioisótopos de Carbono , Fezes/química , Feminino , Fulerenos/administração & dosagem , Fulerenos/urina , Idade Gestacional , Injeções Intravenosas , Fígado/metabolismo , Pulmão/metabolismo , Placenta/metabolismo , Gravidez , Ratos Sprague-Dawley , Distribuição Tecidual
16.
J Appl Toxicol ; 35(12): 1452-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25727383

RESUMO

A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.


Assuntos
Doenças Cardiovasculares/induzido quimicamente , Fulerenos/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Administração Intravenosa , Animais , Biomarcadores/análise , Biotransformação , Radioisótopos de Carbono , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/urina , Feminino , Fulerenos/sangue , Fulerenos/toxicidade , Fulerenos/urina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Taxa de Depuração Metabólica , Metabolômica , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Estresse Oxidativo/imunologia , Ratos Sprague-Dawley , Especificidade da Espécie , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual
19.
Front Nutr ; 11: 1356038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868554

RESUMO

Introduction: Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber. Methods: Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated. Results: Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways. Conclusion: Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.

20.
Sci Rep ; 14(1): 13630, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871777

RESUMO

This cross-sectional study investigated differences in the plasma metabolome in two groups of adults that were of similar age but varied markedly in body composition and dietary and physical activity patterns. Study participants included 52 adults in the lifestyle group (LIFE) (28 males, 24 females) and 52 in the control group (CON) (27 males, 25 females). The results using an extensive untargeted ultra high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) metabolomics analysis with 10,535 metabolite peaks identified 486 important metabolites (variable influence on projections scores of VIP ≥ 1) and 16 significantly enriched metabolic pathways that differentiated LIFE and CON groups. A novel metabolite signature of positive lifestyle habits emerged from this analysis highlighted by lower plasma levels of numerous bile acids, an amino acid profile characterized by higher histidine and lower glutamic acid, glutamine, ß-alanine, phenylalanine, tyrosine, and proline, an elevated vitamin D status, higher levels of beneficial fatty acids and gut microbiome catabolism metabolites from plant substrates, and reduced levels of N-glycan degradation metabolites and environmental contaminants. This study established that the plasma metabolome is strongly associated with body composition and lifestyle habits. The robust lifestyle metabolite signature identified in this study is consistent with an improved life expectancy and a reduced risk for chronic disease.


Assuntos
Estilo de Vida Saudável , Metaboloma , Metabolômica , Humanos , Masculino , Feminino , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Composição Corporal , Cromatografia Líquida de Alta Pressão , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Exercício Físico/fisiologia , Estilo de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA