Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 177(6): 1507-1521.e16, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31031004

RESUMO

Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.


Assuntos
Hipóxia/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Feminino , Ataxia de Friedreich/metabolismo , Células HEK293 , Humanos , Hipóxia/fisiopatologia , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/fisiologia , Células K562 , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Frataxina
2.
Proc Natl Acad Sci U S A ; 116(39): 19421-19430, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31511419

RESUMO

The function of frataxin (FXN) has garnered great scientific interest since its depletion was linked to the incurable neurodegenerative disease Friedreich's ataxia (FRDA). FXN has been shown to be necessary for iron-sulfur (Fe-S) cluster biosynthesis and proper mitochondrial function. The structural and functional core of the Fe-S cluster assembly complex is a low-activity pyridoxal 5'-phosphate (PLP)-dependent cysteine desulfurase enzyme that consists of catalytic (NFS1), LYRM protein (ISD11), and acyl carrier protein (ACP) subunits. Although previous studies show that FXN stimulates the activity of this assembly complex, the mechanism of FXN activation is poorly understood. Here, we develop a radiolabeling assay and use stopped-flow kinetics to establish that FXN is functionally linked to the mobile S-transfer loop cysteine of NFS1. Our results support key roles for this essential cysteine residue in substrate binding, as a general acid to advance the Cys-quinonoid PLP intermediate, as a nucleophile to form an NFS1 persulfide, and as a sulfur delivery agent to generate a persulfide species on the Fe-S scaffold protein ISCU2. FXN specifically accelerates each of these individual steps in the mechanism. Our resulting architectural switch model explains why the human Fe-S assembly system has low inherent activity and requires activation, the connection between the functional mobile S-transfer loop cysteine and FXN binding, and why the prokaryotic system does not require a similar FXN-based activation. Together, these results provide mechanistic insights into the allosteric-activator role of FXN and suggest new strategies to replace FXN function in the treatment of FRDA.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Enxofre/metabolismo , Regulação Alostérica , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico , Cisteína/metabolismo , Humanos , Cinética , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Sulfetos/metabolismo , Frataxina
3.
J Biol Chem ; 294(23): 9276-9284, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30975898

RESUMO

In humans, mitochondrial iron-sulfur cluster biosynthesis is an essential biochemical process mediated by the assembly complex consisting of cysteine desulfurase (NFS1), LYR protein (ISD11), acyl-carrier protein (ACP), and the iron-sulfur cluster assembly scaffold protein (ISCU2). The protein frataxin (FXN) is an allosteric activator that binds the assembly complex and stimulates the cysteine desulfurase and iron-sulfur cluster assembly activities. FXN depletion causes loss of activity of iron-sulfur-dependent enzymes and the development of the neurodegenerative disease Friedreich's ataxia. Recently, a mutation that suppressed the loss of the FXN homolog in Saccharomyces cerevisiae was identified that encodes an amino acid substitution equivalent to the human variant ISCU2 M140I. Here, we developed iron-sulfur cluster synthesis and transfer functional assays and determined that the human ISCU2 M140I variant can substitute for FXN in accelerating the rate of iron-sulfur cluster formation on the monothiol glutaredoxin (GRX5) acceptor protein. Incorporation of both FXN and the M140I substitution had an additive effect, suggesting an acceleration of distinct steps in iron-sulfur cluster biogenesis. In contrast to the canonical role of FXN in stimulating the formation of [2Fe-2S]-ISCU2 intermediates, we found here that the M140I substitution in ISCU2 promotes the transfer of iron-sulfur clusters to GRX5. Together, these results reveal an unexpected mechanism that replaces FXN-based stimulation of the iron-sulfur cluster biosynthetic pathway and suggest new strategies to overcome the loss of cellular FXN that may be relevant to the development of therapeutics for Friedreich's ataxia.


Assuntos
Ataxia de Friedreich/patologia , Proteínas de Ligação ao Ferro/metabolismo , Regulação Alostérica , Liases de Carbono-Enxofre/metabolismo , Ataxia de Friedreich/metabolismo , Glutarredoxinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Ligação Proteica , Frataxina
4.
Proc Natl Acad Sci U S A ; 114(27): E5325-E5334, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634302

RESUMO

In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.


Assuntos
Proteína de Transporte de Acila/metabolismo , Liases de Carbono-Enxofre/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sítios de Ligação , Liases de Carbono-Enxofre/química , Domínio Catalítico , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Cinética , Lipídeos/química , Mitocôndrias/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA