Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(7): e0018724, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-38953643

RESUMO

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media and when growing in vivo during infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain, supported by the fact that the incorporation of C18:1Δ9 into the membrane increased membrane fluidity in both strains. We show that the incorporation of C18:1Δ9 and its elongation product C20:1Δ11 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol and diglycosyldiacylglycerol lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin. The enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms. IMPORTANCE: We show that Staphylococcus aureus can use its known ability to incorporate exogenous fatty acids to enhance its growth at low temperatures. Individual species of phosphatidylglycerols and diglycosyldiacylglycerols bearing one or two degrees of unsaturation derived from the incorporation of C18:1Δ9 at 12°C are described for the first time. In addition, enhanced production of the carotenoid staphyloxanthin occurs at low temperatures. The studies describe a biochemical reality underlying membrane biophysics. This is an example of homeoviscous adaptation to low temperatures utilizing exogenous fatty acids over the regulation of the biosynthesis of endogenous fatty acids. The studies have likely relevance to food safety in that unsaturated fatty acids may enhance the growth of S. aureus in the food environment.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Ácidos Graxos Insaturados , Lipidômica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Ácidos Graxos Insaturados/metabolismo , Fluidez de Membrana , Xantofilas/metabolismo , Lipídeos de Membrana/metabolismo
2.
bioRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352554

RESUMO

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media, and when growing in vivo in an infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain. We show that incorporation of C18:1Δ9 and its elongation product C20:1Δ9 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol (PG) and diglycosyldiacylglycerol (DGDG) lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin; however, this was not an obligatory requirement for cold adaptation. Enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms.

3.
Appl Biochem Biotechnol ; 195(9): 5583-5604, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35829902

RESUMO

Biofilm is the conglomeration of microbial cells which is associated with a surface. In the recent times, the study of biofilm has gained popularity and vivid research is being done to know about the effects of biofilm and that it consists of many organisms which are symbiotic in nature, some of which are human pathogens. Here, in this study, we have discussed about biofilms, its formation, relevance of its presence in the biosphere, and the possible remediations to cope up with its negative effects. Since removal of biofilm is difficult, emphasis has been made to suggest ways to prevent biofilm formation and also to devise ways to utilize biofilm in an economically and environment-friendly method.


Assuntos
Biofilmes , Percepção de Quorum , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA