Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(6): 1564-1571.e6, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610576

RESUMO

Optogenetic studies in mice have revealed new relationships between well-defined neurons and brain functions. However, there are currently no means to achieve the same cell-type specificity in monkeys, which possess an expanded behavioral repertoire and closer anatomical homology to humans. Here, we present a resource for cell-type-specific channelrhodopsin expression in Rhesus monkeys and apply this technique to modulate dopamine activity and monkey choice behavior. These data show that two viral vectors label dopamine neurons with greater than 95% specificity. Infected neurons were activated by light pulses, indicating functional expression. The addition of optical stimulation to reward outcomes promoted the learning of reward-predicting stimuli at the neuronal and behavioral level. Together, these results demonstrate the feasibility of effective and selective stimulation of dopamine neurons in non-human primates and a resource that could be applied to other cell types in the monkey brain.


Assuntos
Comportamento de Escolha/fisiologia , Neurônios Dopaminérgicos/metabolismo , Optogenética/métodos , Animais , Dependovirus/genética , Dopamina/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/genética , Macaca mulatta , Regiões Promotoras Genéticas/genética , Rodopsina/genética
2.
Nat Rev Neurosci ; 18(3): 131-146, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28148956

RESUMO

Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.


Assuntos
Encéfalo/patologia , Conectoma , Modelos Neurológicos , Vias Neurais/patologia , Neurônios/patologia , Animais , Encéfalo/fisiologia , Conectoma/métodos , Humanos , Vias Neurais/fisiologia , Neurociências/métodos
3.
PLoS Comput Biol ; 17(6): e1009017, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111110

RESUMO

To survive, animals have to quickly modify their behaviour when the reward changes. The internal representations responsible for this are updated through synaptic weight changes, mediated by certain neuromodulators conveying feedback from the environment. In previous experiments, we discovered a form of hippocampal Spike-Timing-Dependent-Plasticity (STDP) that is sequentially modulated by acetylcholine and dopamine. Acetylcholine facilitates synaptic depression, while dopamine retroactively converts the depression into potentiation. When these experimental findings were implemented as a learning rule in a computational model, our simulations showed that cholinergic-facilitated depression is important for reversal learning. In the present study, we tested the model's prediction by optogenetically inactivating cholinergic neurons in mice during a hippocampus-dependent spatial learning task with changing rewards. We found that reversal learning, but not initial place learning, was impaired, verifying our computational prediction that acetylcholine-modulated plasticity promotes the unlearning of old reward locations. Further, differences in neuromodulator concentrations in the model captured mouse-by-mouse performance variability in the optogenetic experiments. Our line of work sheds light on how neuromodulators enable the learning of new contingencies.


Assuntos
Comportamento Animal , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Modelos Neurológicos , Neurotransmissores/fisiologia , Recompensa
4.
Eur J Neurosci ; 53(5): 1378-1393, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131134

RESUMO

Cholinergic tone is high during wake and rapid eye movement sleep and lower during slow wave sleep (SWS). Nevertheless, the low tone of acetylcholine during SWS modulates sharp wave ripple incidence in the hippocampus and slow wave activity in the neocortex. Linking the hippocampus and neocortex, the medial entorhinal cortex (mEC) regulates the coupling between these structures during SWS, alternating between silent Down states and active Up states, which outlast neocortical ones. Here, we investigated how low physiological concentrations of acetylcholine (ACh; 100-500 nM) modulate Up and Down states in a mEC slice preparation. We find that ACh has a dual effect on mEC activity: it prolongs apparent Up state duration as recorded in individual cells and decreases the total synaptic charge transfer, without affecting the duration of detectable synaptic activity. The overall outcome of ACh application is excitatory and we show that ACh increases Up state incidence via muscarinic receptor activation. The mean firing rate of principal neurons increased in around half of the cells while the other half showed a decrease in firing rate. Using two-photon calcium imaging of population activity, we found that population-wide network events are more frequent and rhythmic during ACh and confirmed that ACh modulates cell participation in these network events, consistent with a role for cholinergic modulation in regulating information flow between the hippocampus and neocortex during SWS.


Assuntos
Córtex Entorrinal , Neocórtex , Potenciais de Ação , Animais , Colinérgicos , Hipocampo , Camundongos
5.
Eur J Neurosci ; 48(8): 2795-2806, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29356162

RESUMO

The entorhinal-hippocampal system is an important circuit in the brain, essential for certain cognitive tasks such as memory and navigation. Different gamma oscillations occur in this circuit, with the medial entorhinal cortex (mEC), CA3 and CA1 all generating gamma oscillations with different properties. These three gamma oscillations converge within CA1, where much work has gone into trying to isolate them from each other. Here, we compared the gamma generators in the mEC, CA3 and CA1 using optogenetically induced theta-gamma oscillations. Expressing channelrhodopsin-2 in principal neurons in each of the three regions allowed for the induction of gamma oscillations via sinusoidal blue light stimulation at theta frequency. Recording the oscillations in CA1 in vivo, we found that CA3 stimulation induced slower gamma oscillations than CA1 stimulation, matching in vivo reports of spontaneous CA3 and CA1 gamma oscillations. In brain slices ex vivo, optogenetic stimulation of CA3 induced slower gamma oscillations than stimulation of either mEC or CA1, whose gamma oscillations were of similar frequency. All three gamma oscillations had a current sink-source pair between the perisomatic and dendritic layers of the same region. Taking advantage of this model to analyse gamma frequency mechanisms in slice, we showed using pharmacology that all three gamma oscillations were dependent on the same types of synaptic receptor, being abolished by blockade of either type A γ-aminobutyric acid receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors, and insensitive to blockade of N-methyl-d-aspartate receptors. These results indicate that a fast excitatory-inhibitory feedback loop underlies the generation of gamma oscillations in all three regions.


Assuntos
Córtex Entorrinal/fisiologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Animais , Córtex Entorrinal/química , Feminino , Hipocampo/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/química , Vias Neurais/fisiologia , Optogenética/métodos
6.
J Neurosci ; 36(15): 4155-69, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076416

RESUMO

Gamma oscillations (30-120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channel rhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo The results suggest the presence of a single gamma rhythm generator with a frequency range of 65-75 Hz at 32 °C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal-interneuron circuit mechanism. SIGNIFICANCE STATEMENT: This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region.


Assuntos
Região CA1 Hipocampal/fisiologia , Ritmo Gama/fisiologia , Optogenética/métodos , Ritmo Teta/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Channelrhodopsins , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Estimulação Luminosa , Regiões Promotoras Genéticas/genética , Ritmo Teta/efeitos dos fármacos
7.
Cereb Cortex ; 26(8): 3637-3654, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27282393

RESUMO

Spike timing-dependent plasticity (STDP) is a Hebbian learning rule important for synaptic refinement during development and for learning and memory in the adult. Given the importance of the hippocampus in memory, surprisingly little is known about the mechanisms and functions of hippocampal STDP. In the present work, we investigated the requirements for induction of hippocampal spike timing-dependent long-term potentiation (t-LTP) and spike timing-dependent long-term depression (t-LTD) and the mechanisms of these 2 forms of plasticity at CA3-CA1 synapses in young (P12-P18) mouse hippocampus. We found that both t-LTP and t-LTD can be induced at hippocampal CA3-CA1 synapses by pairing presynaptic activity with single postsynaptic action potentials at low stimulation frequency (0.2 Hz). Both t-LTP and t-LTD require NMDA-type glutamate receptors for their induction, but the location and properties of these receptors are different: While t-LTP requires postsynaptic ionotropic NMDA receptor function, t-LTD does not, and whereas t-LTP is blocked by antagonists at GluN2A and GluN2B subunit-containing NMDA receptors, t-LTD is blocked by GluN2C or GluN2D subunit-preferring NMDA receptor antagonists. Both t-LTP and t-LTD require postsynaptic Ca(2+) for their induction. Induction of t-LTD also requires metabotropic glutamate receptor activation, phospholipase C activation, postsynaptic IP3 receptor-mediated Ca(2+) release from internal stores, postsynaptic endocannabinoid (eCB) synthesis, activation of CB1 receptors and astrocytic signaling, possibly via release of the gliotransmitter d-serine. We furthermore found that presynaptic calcineurin is required for t-LTD induction. t-LTD is expressed presynaptically as indicated by fluctuation analysis, paired-pulse ratio, and rate of use-dependent depression of postsynaptic NMDA receptor currents by MK801. The results show that CA3-CA1 synapses display both NMDA receptor-dependent t-LTP and t-LTD during development and identify a presynaptic form of hippocampal t-LTD similar to that previously described at neocortical synapses during development.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Terminações Pré-Sinápticas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Calcineurina/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Endocanabinoides/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
8.
Proc Natl Acad Sci U S A ; 111(42): 15238-43, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25246561

RESUMO

Left-right asymmetries have likely evolved to make optimal use of bilaterian nervous systems; however, little is known about the synaptic and circuit mechanisms that support divergence of function between equivalent structures in each hemisphere. Here we examined whether lateralized hippocampal memory processing is present in mice, where hemispheric asymmetry at the CA3-CA1 pyramidal neuron synapse has recently been demonstrated, with different spine morphology, glutamate receptor content, and synaptic plasticity, depending on whether afferents originate in the left or right CA3. To address this question, we used optogenetics to acutely silence CA3 pyramidal neurons in either the left or right dorsal hippocampus while mice performed hippocampus-dependent memory tasks. We found that unilateral silencing of either the left or right CA3 was sufficient to impair short-term memory. However, a striking asymmetry emerged in long-term memory, wherein only left CA3 silencing impaired performance on an associative spatial long-term memory task, whereas right CA3 silencing had no effect. To explore whether synaptic properties intrinsic to the hippocampus might contribute to this left-right behavioral asymmetry, we investigated the expression of hippocampal long-term potentiation. Following the induction of long-term potentiation by high-frequency electrical stimulation, synapses between CA3 and CA1 pyramidal neurons were strengthened only when presynaptic input originated in the left CA3, confirming an asymmetry in synaptic properties. The dissociation of hippocampal long-term memory function between hemispheres suggests that memory is routed via distinct left-right pathways within the mouse hippocampus, and provides a promising approach to help elucidate the synaptic basis of long-term memory.


Assuntos
Região CA3 Hipocampal/fisiologia , Memória/fisiologia , Animais , Comportamento Animal , Mapeamento Encefálico , Dependovirus , Inativação Gênica , Halorrodopsinas/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Memória Espacial , Sinapses/fisiologia
9.
J Neurosci ; 35(14): 5459-70, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855164

RESUMO

Recent studies demonstrated that the anatomical network of the human brain shows a "rich-club" organization. This complex topological feature implies that highly connected regions, hubs of the large-scale brain network, are more densely interconnected with each other than expected by chance. Rich-club nodes were traversed by a majority of short paths between peripheral regions, underlining their potential importance for efficient global exchange of information between functionally specialized areas of the brain. Network hubs have also been described at the microscale of brain connectivity (so-called "hub neurons"). Their role in shaping synchronous dynamics and forming microcircuit wiring during development, however, is not yet fully understood. The present study aimed to investigate the role of hubs during network development, using multi-electrode arrays and functional connectivity analysis during spontaneous multi-unit activity (MUA) of dissociated primary mouse hippocampal neurons. Over the first 4 weeks in vitro, functional connectivity significantly increased in strength, density, and size, with mature networks demonstrating a robust modular and small-world topology. As expected by a "rich-get-richer" growth rule of network evolution, MUA graphs were found to form rich-clubs at an early stage in development (14 DIV). Later on, rich-club nodes were a consistent topological feature of MUA graphs, demonstrating high nodal strength, efficiency, and centrality. Rich-club nodes were also found to be crucial for MUA dynamics. They often served as broker of spontaneous activity flow, confirming that hub nodes and rich-clubs may play an important role in coordinating functional dynamics at the microcircuit level.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/citologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Dinâmica não Linear , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
10.
J Neurophysiol ; 116(2): 306-21, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27098024

RESUMO

Accurate identification of bursting activity is an essential element in the characterization of neuronal network activity. Despite this, no one technique for identifying bursts in spike trains has been widely adopted. Instead, many methods have been developed for the analysis of bursting activity, often on an ad hoc basis. Here we provide an unbiased assessment of the effectiveness of eight of these methods at detecting bursts in a range of spike trains. We suggest a list of features that an ideal burst detection technique should possess and use synthetic data to assess each method in regard to these properties. We further employ each of the methods to reanalyze microelectrode array (MEA) recordings from mouse retinal ganglion cells and examine their coherence with bursts detected by a human observer. We show that several common burst detection techniques perform poorly at analyzing spike trains with a variety of properties. We identify four promising burst detection techniques, which are then applied to MEA recordings of networks of human induced pluripotent stem cell-derived neurons and used to describe the ontogeny of bursting activity in these networks over several months of development. We conclude that no current method can provide "perfect" burst detection results across a range of spike trains; however, two burst detection techniques, the MaxInterval and logISI methods, outperform compared with others. We provide recommendations for the robust analysis of bursting activity in experimental recordings using current techniques.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Humanos , Modelos Estatísticos
11.
Brain ; 138(Pt 11): 3345-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26220942

RESUMO

Tauopathies, such as Alzheimer's disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Proteínas tau/genética , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/patologia , Recém-Nascido , Masculino , Microscopia Confocal , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/patologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tauopatias , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
12.
Eur J Neurosci ; 41(12): 1524-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25892211

RESUMO

The medial prefrontal cortex (mPFC) and ventral striatum (VS), including the nucleus accumbens, are key forebrain regions involved in regulating behaviour for future rewards. Dysfunction of these regions can result in impulsivity, characterized by actions that are mistimed and executed without due consideration of their consequences. Here we recorded the activity of single neurons in the mPFC and VS of 16 rats during performance on a five-choice serial reaction time task of sustained visual attention and impulsivity. Impulsive responses were assessed by the number of premature responses made before target stimuli were presented. We found that the majority of cells signalled trial outcome after an action was made (both rewarded and unrewarded). Positive and negative ramping activity was a feature of population activity in the mPFC and VS (49.5 and 50.4% of cells, respectively). This delay-related activity increased at the same rate and reached the same maximum (or minimum) for trials terminated by either correct or premature responses. However, on premature trials, the ramping activity started earlier and coincided with shorter latencies to begin waiting. For all trial types the pattern of ramping activity was unchanged when the pre-stimulus delay period was made variable. Thus, premature responses may result from a failure in the timing of the initiation of a waiting process, combined with a reduced reliance on external sensory cues, rather than a primary failure in delay activity. Our findings further show that the neural locus of this aberrant timing signal may emanate from structures outside the mPFC and VS.


Assuntos
Potenciais de Ação/fisiologia , Comportamento Impulsivo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Estriado Ventral/citologia , Animais , Área Sob a Curva , Comportamento de Escolha , Condicionamento Operante , Modelos Lineares , Masculino , Microeletrodos , Análise de Componente Principal , Ratos , Tempo de Reação/fisiologia
13.
Proc Natl Acad Sci U S A ; 109(8): 2919-24, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22315405

RESUMO

Multiphoton microscopy is a powerful tool in neuroscience, promising to deliver important data on the spatiotemporal activity within individual neurons as well as in networks of neurons. A major limitation of current technologies is the relatively slow scan rates along the z direction compared to the kHz rates obtainable in the x and y directions. Here, we describe a custom-built microscope system based on an architecture that allows kHz scan rates over hundreds of microns in all three dimensions without introducing aberration. We further demonstrate how this high-speed 3D multiphoton imaging system can be used to study neuronal activity at millisecond resolution at the subcellular as well as the population level.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/fisiologia , Animais , Córtex Cerebral/citologia , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
14.
J Neurosci ; 33(30): 12407-22, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884946

RESUMO

Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Feto/citologia , Células-Tronco Neurais/citologia , Células Neuroepiteliais/citologia , Rombencéfalo/citologia , Animais , Transplante de Tecido Encefálico/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Cerebelo/citologia , Técnicas de Cocultura , Fator de Crescimento Epidérmico/farmacologia , Células Alimentadoras , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Masculino , Camundongos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco/métodos
15.
J Neurophysiol ; 112(2): 287-99, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24760781

RESUMO

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However, it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent, but not preadolescent, CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect on backpropagation is restricted to distal regions of apical dendrites (>200 µm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate BAPs. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally regulated manner.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Dendritos/fisiologia , Antagonistas GABAérgicos/farmacologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores , Agonistas GABAérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores , Masculino , Células Piramidais/efeitos dos fármacos , Células Piramidais/crescimento & desenvolvimento , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo
16.
iScience ; 27(7): 110147, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38989463

RESUMO

Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease with no cure. Human endogenous retroviruses (HERVs) have been implicated in its pathogenesis but their relevance to ALS is not fully understood. We examined bulk RNA-seq data from almost 2,000 ALS and unaffected control samples derived from the cortex and spinal cord. Using different methods of feature selection, including differential expression analysis and machine learning, we discovered that transcription of HERV-K loci 1q22 and 8p23.1 were significantly upregulated in the spinal cord of individuals with ALS. Additionally, we identified a subset of ALS patients with upregulated HERV-K expression in the cortex and spinal cord. We also found the expression of HERV-K loci 19q11 and 8p23.1 was correlated with protein coding genes previously implicated in ALS and dysregulated in ALS patients in this study. These results clarify the association of HERV-K and ALS and highlight specific genes in the pathobiology of late-stage ALS.

17.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370637

RESUMO

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.

18.
J Neurosci ; 32(41): 14064-73, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055474

RESUMO

The Hodgkin-Huxley studies of the action potential, published 60 years ago, are a central pillar of modern neuroscience research, ranging from molecular investigations of the structural basis of ion channel function to the computational implications at circuit level. In this Symposium Review, we aim to demonstrate the ongoing impact of Hodgkin's and Huxley's ideas. The Hodgkin-Huxley model established a framework in which to describe the structural and functional properties of ion channels, including the mechanisms of ion permeation, selectivity, and gating. At a cellular level, the model is used to understand the conditions that control both the rate and timing of action potentials, essential for neural encoding of information. Finally, the Hodgkin-Huxley formalism is central to computational neuroscience to understand both neuronal integration and circuit level information processing, and how these mechanisms might have evolved to minimize energy cost.


Assuntos
Potenciais de Ação/fisiologia , Canais Iônicos/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Humanos , Canais Iônicos/química
19.
J Physiol ; 591(4): 835-43, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23266934

RESUMO

During slow-wave sleep, cortical neurons display synchronous fluctuations between periods of persistent activity ('UP states') and periods of relative quiescence ('DOWN states'). Such UP and DOWN states are also seen in isolated cortical slices. Recently, we reported that both spontaneous and evoked termination of UP states in slices from the rat medial entorhinal cortex (mEC) involves GABA(B) receptors. Here, in order to dissociate the roles of GABA(B1a)- and GABA(B1b)-containing receptors in terminating UP states, we used mEC slices from mice in which either the GABA(B1a) or the GABA(B1b) subunit had been genetically ablated. Pharmacological blockade of GABA(B) receptors using the antagonist CGP55845 prolonged the UP state duration in both wild-type mice and those lacking the GABA(B1b) subunit, but not in those lacking the GABA(B1a) subunit. Conversely, electrical stimulation of layer 1 could terminate an ongoing UP state in both wild-type mice and those lacking the GABA(B1a) subunit, but not in those lacking the GABA(B1b) subunit. Together with previous reports, indicating a preferential presynaptic location of GABA(B1a)- and postsynaptic location of GABA(B1b)-containing receptors, these results suggest that presynaptic GABA(B) receptors contribute to spontaneous DOWN state transitions, whilst postsynaptic GABA(B) receptors are essential for the afferent termination of the UP state. Inputs to layer 1 from other brain regions could thus provide a powerful mechanism for synchronizing DOWN state transitions across cortical areas via activation of GABAergic interneurons targeting postsynaptic GABA(B) receptors.


Assuntos
Córtex Entorrinal/fisiologia , Receptores de GABA-B/fisiologia , Animais , Estimulação Elétrica , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Técnicas de Patch-Clamp
20.
Eur J Neurosci ; 37(8): 1242-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23336973

RESUMO

Cortical networks display persistent activity in the form of periods of sustained synchronous depolarizations ('UP states') punctuated by periods of relative hyperpolarization ('DOWN states'), which together form the slow oscillation. UP states are known to be synaptically generated and are sustained by a dynamic balance of excitation and inhibition, with fast ionotropic glutamatergic excitatory and GABAergic inhibitory conductances increasing during the UP state. Previously, work from our group demonstrated that slow metabotropic GABA receptors also play an important role in terminating the UP state, but the effects of other neuromodulators on this network phenomenon have received little attention. Given that persistent activity is a neural correlate of working memory and that signalling through dopamine receptors has been shown to be critical for working memory tasks, we examined whether dopaminergic neurotransmission affected the slow oscillation. Here, using an in vitro model of the slow oscillation in rat medial entorhinal cortex, we showed that dopamine strongly and reversibly suppressed cortical UP states. We showed that this effect was mediated through D1 -like and not D2 -like dopamine receptors, and we found no evidence that tonic dopaminergic transmission affected UP states in our model.


Assuntos
Dopamina/metabolismo , Córtex Entorrinal/fisiologia , Receptores de Dopamina D1/metabolismo , Transmissão Sináptica/fisiologia , Animais , Sincronização Cortical/fisiologia , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA