Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(8): 1266-1275, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36349687

RESUMO

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships and demonstrate the importance of isolated populations in pQTL analysis.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Fenótipo , Sequenciamento Completo do Genoma , Proteínas Sanguíneas/genética , Estudo de Associação Genômica Ampla
2.
Cell Mol Life Sci ; 81(1): 139, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480559

RESUMO

Neurotoxic amyloid-ß (Aß) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the ß-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo. Most of these classical models overexpress human APP with mutations driving AD-associated pathogenic APP processing. However, the resulting pattern of Aß species in the mouse brains differs from those observed in AD patients' brains. Particularly mutations proximal to the ß-secretase cleavage site (e.g., the so-called Swedish APP (APPswe) fostering Aß1-x formation) lead to artificial Aß production, as N-terminally truncated Aß peptides are hardly present in these mouse brains. Meprin ß is an alternative ß-secretase upregulated in brains of AD patients and capable of generating N-terminally truncated Aß2-x peptides. Therefore, we aimed to generate a mouse model for the production of so far underestimated Aß2-x peptides by conditionally overexpressing meprin ß in astrocytes. We chose astrocytes as meprin ß was detected in this cell type in close proximity to Aß plaques in AD patients' brains. The meprin ß-overexpressing mice showed elevated amyloidogenic APP processing detected with a newly generated neo-epitope-specific antibody. Furthermore, we observed elevated Aß production from endogenous APP as well as AD-related behavior changes (hyperlocomotion and deficits in spatial memory). The novel mouse model as well as the established tools and methods will be helpful to further characterize APP cleavage and the impact of different Aß species in future studies.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Camundongos , Animais , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Astrócitos/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Proteólise , Encéfalo/metabolismo
3.
Gastric Cancer ; 26(4): 542-552, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976399

RESUMO

BACKGROUND: The gastric microbiome and inflammation play a key role in gastric cancer (GC) by regulating the immune response in a complex manner and by inflammatory events supporting carcinogenesis. Meprin ß is a zinc endopeptidase and participates in tissue homeostasis, intestinal barrier function and immunological processes. It influences local inflammatory processes, dysbiosis and the microbiome. Here, we tested the hypothesis that meprin ß is expressed in GC and of tumor biological significance. PATIENTS AND METHODS: Four hundred forty whole mount tissue sections of patients with therapy-naive GC were stained with an anti-meprin ß antibody. The histoscore and staining pattern were analyzed for each case. Following dichotomization at the median histoscore into a "low" and "high" group, the expression was correlated with numerous clinicopathological patient characteristics. RESULTS: Meprin ß was found intracellularly and at the cell membrane of GC. Cytoplasmic expression correlated with the phenotype according to Lauren, microsatellite instability and PD-L1 status. Membranous expression correlated with intestinal phenotype, mucin-1-, E-cadherin-, ß-catenin status, mucin typus, microsatellite instability, KRAS mutation and PD-L1-positivity. Patients with cytoplasmic expression of meprin ß showed a better overall and tumor-specific survival. CONCLUSIONS: Meprin ß is differentially expressed in GC and has potential tumor biological relevance. It might function as a tumor suppressor or promotor depending on histoanatomical site and context.


Assuntos
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Neoplasias Gástricas/patologia , Instabilidade de Microssatélites , Mucinas/genética , Membrana Celular/metabolismo
4.
Cell Mol Life Sci ; 79(4): 212, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35344086

RESUMO

Despite the neurodegenerative disorder Alzheimer's disease (AD) is the most common form of dementia in late adult life, there is currently no therapy available to prevent the onset or slow down the progression of AD. The progressive cognitive decline in AD correlates with a successive accumulation of cerebral amyloid-ß (Aß) due to impaired clearance mechanisms. A significant percentage is removed by low-density lipoprotein receptor-related protein 1 (LRP1)-mediated transport across the blood-brain barrier (BBB) into the periphery. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to members of the low-density lipoprotein receptor protein family at the cell surface and targets them for lysosomal degradation, which reduces the number of functional receptors. However, the adverse impact of PCSK9 on LRP1-mediated brain Aß clearance remains elusive. By using an established BBB model, we identified reduced LRP1-mediated brain-to-blood Aß clearance due to PCSK9 across different endothelial monolayer in vitro. Consequently, the repetitive application of FDA-approved monoclonal anti-PCSK9 antibodies into 5xFAD mice decreased the cerebral Aß burden across variants and aggregation state, which was not reproducible in brain endothelial-specific LRP1-/- 5xFAD mice. The peripheral PCSK9 inhibition reduced Aß pathology in prefrontal cortex and hippocampus-brain areas critically involved in memory processing-and prevented disease-related impairment in hippocampus-dependent memory formation. Our data suggest that peripheral inhibition of PCSK9 by already available therapeutic antibodies may be a novel and easily applicable potential AD treatment.


Assuntos
Barreira Hematoencefálica , Pró-Proteína Convertase 9 , Peptídeos beta-Amiloides/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Humanos , Camundongos , Pró-Proteína Convertase 9/metabolismo
5.
Cell Mol Life Sci ; 79(3): 168, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35235058

RESUMO

ß-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the major described ß-secretase to generate Aß peptides in Alzheimer's disease (AD). However, all therapeutic attempts to block BACE1 activity and to improve AD symptoms have so far failed. A potential candidate for alternative Aß peptides generation is the metalloproteinase meprin ß, which cleaves APP predominantly at alanine in p2 and in this study we can detect an increased meprin ß expression in AD brain. Here, we report the generation of the transgenic APP/lon mouse model of AD lacking the functional Mep1b gene (APP/lon × Mep1b-/-). We examined levels of canonical and truncated Aß species using urea-SDS-PAGE, ELISA and immunohistochemistry in brains of APP/lon mouse × Mep1b-/-. Additionally, we investigated the cognitive abilities of these mice during the Morris water maze task. Aß1-40 and 1-42 levels are reduced in APP/lon mice when meprin ß is absent. Immunohistochemical staining of mouse brain sections revealed that N-terminally truncated Aß2-x peptide deposition is decreased in APP/lon × Mep1b-/- mice. Importantly, loss of meprin ß improved cognitive abilities and rescued learning behavior impairments in APP/lon mice. These observations indicate an important role of meprin ß within the amyloidogenic pathway and Aß production in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Aprendizagem , Transtornos da Memória/patologia , Metaloendopeptidases/deficiência , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Metaloendopeptidases/metabolismo , Camundongos Knockout , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
6.
FASEB J ; 35(7): e21677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125978

RESUMO

Meprin ß is a zinc-dependent metalloprotease exhibiting a unique cleavage specificity with strong preference for acidic amino acids at the cleavage site. Proteomic studies revealed a diverse substrate pool of meprin ß including the interleukin-6 receptor (IL-6R) and the amyloid precursor protein (APP). Dysregulation of meprin ß is often associated with pathological conditions such as chronic inflammation, fibrosis, or Alzheimer's disease (AD). The extracellular regulation of meprin ß including interactors, sheddases, and activators has been intensively investigated while intracellular regulation has been barely addressed in the literature. This study aimed to analyze C-terminal phosphorylation of meprin ß with regard to cell surface expression and proteolytic activity. By immunoprecipitation of endogenous meprin ß from the colon cancer cell line Colo320 and subsequent LC-MS analysis, we identified several phosphorylation sites in its C-terminal region. Here, T694 in the C-terminus of meprin ß was the most preferred residue after phorbol 12-myristate 13-acetate (PMA) stimulation. We further demonstrated the role of protein kinase C (PKC) isoforms for meprin ß phosphorylation and identified the involvement of PKC-α and PKC-ß. As a result of phosphorylation, the meprin ß activity at the cell surface is reduced and, consequently, the extent of substrate cleavage is diminished. Our data indicate that this decrease of the surface activity is caused by the internalization and degradation of meprin ß.


Assuntos
Membrana Celular/metabolismo , Neoplasias do Colo/patologia , Espaço Extracelular/metabolismo , Metaloendopeptidases/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteólise , Neoplasias do Colo/metabolismo , Regulação da Expressão Gênica , Humanos , Metaloendopeptidases/genética , Fosforilação , Proteína Quinase C beta/genética , Proteína Quinase C-alfa/genética , Células Tumorais Cultivadas
7.
Microsc Microanal ; : 1-6, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073058

RESUMO

Correlative microscopy approaches are attracting considerable interest in several research fields such as materials and battery research. Recent developments regarding X-ray computer tomography have made this technique available in a compact module for scanning electron microscopes (SEMs). Nano-computed tomography (nanoCT) allows morphological analysis of samples in a nondestructive way and to generate 2D and 3D overviews. However, morphological analysis alone is not sufficient for advanced studies, and to draw conclusions beyond morphology, chemical analysis is needed. While conventional SEM-based chemical analysis techniques such as energy-dispersive X-ray spectroscopy (EDS) are adequate in many cases, they are not well suited for the analysis of trace elements and low-Z elements such as hydrogen or lithium. Furthermore, the large information depth in typical SEM-EDS imaging conditions limits the lateral resolution to micrometer length scales. In contrast, secondary ion mass spectrometry (SIMS) can perform elemental mapping with good surface sensitivity, nanoscale lateral resolution, and the possibility to analyze even low-Z elements and isotopes. In this study, we demonstrate the feasibility and compatibility of a novel FIB-SEM-based correlative nanoCT-SIMS imaging approach to correlate morphological and chemical data of the exact same sample volume, using a cathode material of a commercial lithium battery as an example.

8.
J Cell Sci ; 132(11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31076514

RESUMO

The extracellular metalloprotease meprin ß is expressed as a homodimer and is primarily membrane bound. Meprin ß can be released from the cell surface by its known sheddases ADAM10 and ADAM17. Activation of pro-meprin ß at the cell surface prevents its shedding, thereby stabilizing its proteolytic activity at the plasma membrane. We show that a single amino acid exchange variant (G32R) of meprin ß, identified in endometrium cancer, is more active against a peptide substrate and the IL-6 receptor than wild-type meprin ß. We demonstrate that the change to an arginine residue at position 32 represents an additional activation site used by furin-like proteases in the Golgi, which consequently leads to reduced shedding by ADAM17. We investigated this meprin ß G32R variant to assess cell proliferation, invasion through a collagen IV matrix and outgrowth from tumor spheroids. We found that increased meprin ß G32R activity at the cell surface reduces cell proliferation, but increases cell invasion.


Assuntos
Proliferação de Células/genética , Neoplasias do Endométrio/patologia , Endométrio/patologia , Metaloendopeptidases/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células COS , Chlorocebus aethiops , Colágeno/metabolismo , Neoplasias do Endométrio/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Esferoides Celulares , Células Tumorais Cultivadas
9.
FASEB J ; 34(5): 6675-6687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32237095

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is a multifunctional surface protein that affects survival, migration, and phagocytic capacity of myeloid cells. Soluble TREM2 levels were found to be increased in early stages of sporadic and familial Alzheimer's disease (AD) probably reflecting a defensive microglial response to some initial brain damage. The disintegrin and metalloproteases (ADAM) 10 and 17 were identified as TREM2 sheddases. We demonstrate that meprin ß is a direct TREM2 cleaving enzyme using ADAM10/17 deficient HEK293 cells. LC-MS/MS analysis of recombinant TREM2 incubated with meprin ß revealed predominant cleavage between Arg136 and Asp137, distant to the site identified for ADAM10/17. We further demonstrate that the metalloprotease meprin ß cleaves TREM2 on macrophages concomitant with decreased levels of soluble TREM2 in the serum of Mep1b-/- mice compared to WT controls. Isolated BMDMs from Mep1b-/- mice showed significantly increased full-length TREM2 levels and enhanced phagocytosis efficiency compared to WT cells. The diminished constitutive shedding of TREM2 on meprin ß deficient macrophages could be rescued by ADAM stimulation through LPS treatment. Our data provide evidence that meprin ß is a TREM2 sheddase on macrophages and suggest that multiple proteases may be involved in the generation of soluble TREM2.


Assuntos
Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/fisiologia , Fagocitose , Receptores Imunológicos/metabolismo , Animais , Arginina/metabolismo , Ácido Aspártico/metabolismo , Macrófagos/citologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptores Imunológicos/genética
10.
Cell Mol Life Sci ; 77(2): 331-350, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31209506

RESUMO

Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web.


Assuntos
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Miócitos Cardíacos/metabolismo
11.
Microsc Microanal ; : 1-10, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34080531

RESUMO

Site-specific specimen preparation for atom probe tomography (APT) is a challenging task. Small features need to be located using a suitable imaging technique and captured within a volume of less than 0.01 µm3. Correlative microscopy has shown to be helpful for target preparation as well as to gain complementary information about the material. Current strategies developed in that direction can be highly time-consuming and not always ensure the correct site extraction in complex microstructures. In this work, we present a methodology to study grain boundaries and interfaces in martensitic steels by combining electron backscattered diffraction, transmission Kikuchi diffraction (TKD), and APT. Furthermore, we include the design of a sample holder that allows to perform TKD and scanning transmission electron microscopy on the specimen during preparation without breaking the vacuum of the scanning electron microscope/focused ion beam workstation. We show a case study where a prior austenite grain boundary is traced from the bulk material to the apex of the APT specimen. The presence of contamination due to the specimen exposure to the electron beam and the use of plasma cleaning to minimize it are discussed.

12.
Cancer Metastasis Rev ; 38(3): 347-356, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31482488

RESUMO

A crucial step for tumor cell extravasation and metastasis is the migration through the extracellular matrix, which requires proteolytic activity. Hence, proteases, particularly matrix metalloproteases (MMPs), have been discussed as therapeutic targets and their inhibition should diminish tumor growth and metastasis. The metalloproteases meprin α and meprin ß are highly abundant on intestinal enterocytes and their expression was associated with different stages of colorectal cancer. Due to their ability to cleave extracellular matrix (ECM) components, they were suggested as pro-tumorigenic enzymes. Additionally, both meprins were shown to have pro-inflammatory activity by cleaving cytokines and their receptors, which correlates with chronic intestinal inflammation and associated conditions. On the other hand, meprin ß was identified as an essential enzyme for the detachment and renewal of the intestinal mucus, important to prevent bacterial overgrowth and infection. Considering this, it is hard to estimate whether high activity of meprins is generally detrimental or if these enzymes have also protective functions in certain cancer types. For instance, for colorectal cancer, patients with high meprin ß expression in tumor tissue exhibit a better survival prognosis, which is completely different to prostate cancer. This demonstrates that the very same enzyme may have contrary effects on tumor initiation and growth, depending on its tissue and subcellular localization. Hence, precise knowledge about proteolytic enzymes is required to design the most efficient therapeutic options for cancer treatment. In this review, we summarize the current findings on meprins' functions, expression, and cancer-associated variants with possible implications for tumor progression and metastasis.


Assuntos
Metaloendopeptidases/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Humanos , Metaloendopeptidases/biossíntese , Metástase Neoplásica , Microambiente Tumoral
13.
FASEB J ; 33(11): 11925-11940, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31381863

RESUMO

Meprin ß is a membrane-bound metalloprotease involved in extracellular matrix assembly and inflammatory processes in health and disease. A disintegrin and metalloproteinase (ADAM)10 and ADAM17 are physiologic relevant sheddases of inactive promeprin ß, which influences its substrate repertoire and subsequent biologic functions. Proteomic analysis also revealed several ADAMs as putative meprin ß substrates. Here, we demonstrate specific N-terminal processing of ADAM9, 10, and 17 by meprin ß and identify cleavage sites within their prodomains. Because ADAM prodomains can act as specific inhibitors, we postulate a role for meprin ß in the regulation of ADAM activities. Indeed, prodomain cleavage by meprin ß caused increased ADAM protease activities, as observed by peptide-based cleavage assays and demonstrated by increased ectodomain shedding activity. Direct interaction of meprin ß and ADAM proteases could be shown by immunofluorescence microscopy and immunoprecipitation experiments. As demonstrated by a bacterial activator of meprin ß and additional measurement of TNF-α shedding on bone marrow-derived macrophages, meprin ß/ADAM protease interactions likely influence inflammatory conditions. Thus, we identified a novel proteolytic pathway of meprin ß with ADAM proteases to control protease activities at the cell surface as part of the protease web.-Wichert, R., Scharfenberg, F., Colmorgen, C., Koudelka, T., Schwarz, J., Wetzel, S., Potempa, B., Potempa, J., Bartsch, J. W., Sagi, I., Tholey, A., Saftig, P., Rose-John, S., Becker-Pauly, C. Meprin ß induces activities of A disintegrin and metalloproteinases 9, 10, and 17 by specific prodomain cleavage.


Assuntos
Proteínas ADAM/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Proteína ADAM10/química , Proteína ADAM10/genética , Proteína ADAM17/química , Proteína ADAM17/genética , Animais , Membrana Celular/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metaloendopeptidases/genética , Camundongos Endogâmicos C57BL , Domínios Proteicos , Proteólise , Proteômica/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
FASEB J ; 33(6): 7490-7504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916990

RESUMO

Biologic activity of proteases is mainly characterized by the substrate specificity, tissue distribution, and cellular localization. The human metalloproteases meprin α and meprin ß share 41% sequence identity and exhibit a similar cleavage specificity with a preference for negatively charged amino acids. However, shedding of meprin α by furin on the secretory pathway makes it a secreted enzyme in comparison with the membrane-bound meprin ß. In this study, we identified human meprin α and meprin ß as forming covalently linked membrane-tethered heterodimers in the early endoplasmic reticulum, thereby preventing furin-mediated secretion of meprin α. Within this newly formed enzyme complex, meprin α was able to be activated on the cell surface and detected by cleavage of a novel specific fluorogenic peptide substrate. However, the known meprin ß substrates amyloid precursor protein and CD99 were not shed by membrane-tethered meprin α. On the other hand, being linked to meprin α, activation of or substrate cleavage by meprin ß on the cell surface was not altered. Interestingly, proteolytic activity of both proteases was increased in the heteromeric complex, indicating an increased proteolytic potential at the plasma membrane. Because meprins are susceptibility genes for inflammatory bowel disease (IBD), and to investigate the physiologic impact of the enzyme complex, we performed transcriptome analyses of intestinal mucosa from meprin-knockout mice. Comparison of the transcriptional gene analysis data with gene analyses of IBD patients revealed that different gene subsets were dysregulated if meprin α was expressed alone or in the enzyme complex, demonstrating the physiologic and pathophysiological relevance of the meprin heterodimer formation.-Peters, F., Scharfenberg, F., Colmorgen, C., Armbrust, F., Wichert, R., Arnold, P., Potempa, B., Potempa, J., Pietrzik, C. U., Häsler, R., Rosenstiel, P., Becker-Pauly, C. Tethering soluble meprin α in an enzyme complex to the cell surface affects IBD-associated genes.


Assuntos
Doenças Inflamatórias Intestinais/genética , Metaloendopeptidases/metabolismo , Animais , Membrana Celular/metabolismo , Células HeLa , Humanos , Metaloendopeptidases/genética , Camundongos , Camundongos Knockout
15.
PLoS Biol ; 15(1): e2000080, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060820

RESUMO

Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography-mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.


Assuntos
Proteólise , Receptores de Interleucina-6/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Glicosilação , Humanos , Espaço Intracelular/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Mutação/genética , Polissacarídeos/metabolismo , Prolina/metabolismo , Domínios Proteicos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/química , Receptores de Interleucina-6/genética , Transdução de Sinais , Solubilidade , Valina/metabolismo
16.
Langmuir ; 36(45): 13415-13425, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141584

RESUMO

Surface patterning in the micro- and nanometer-range by means of pulsed laser interference has repeatedly proven to be a versatile tool for surface functionalization. With these techniques, however, the surface is often changed not only in terms of morphology but also in terms of surface chemistry. In this study, we present an in-depth investigation of the chemical surface modification occurring during surface patterning of copper by ultrashort pulsed direct laser interference patterning (USP-DLIP). A multimethod approach of parallel analysis using visualizing, topography-sensitive, and spectroscopic techniques allowed a detailed quantification of surface morphology as well as composition and distribution of surface chemistry related to both processing and atmospheric aging. The investigations revealed a heterogeneous surface composition separated in peak and valley regions predominantly consisting of Cu2O, as well as superficial agglomerations of CuO and carbon species. The evaluation was supported by a modeling approach for the quantification of XPS results in relation to heterogeneous surface composition, which was observed by means of a combination of different spectroscopic techniques. The overall results provide a detailed understanding of the chemical and topographical surface modification during USP-DLIP, which allows a more targeted use of this technology for surface functionalization.

17.
Cell Mol Life Sci ; 76(16): 3193-3206, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201463

RESUMO

Alzheimer's Disease (AD) is the sixth-leading cause of death in industrialized countries. Neurotoxic amyloid-ß (Aß) plaques are one of the pathological hallmarks in AD patient brains. Aß accumulates in the brain upon sequential, proteolytic processing of the amyloid precursor protein (APP) by ß- and γ-secretases. However, so far disease-modifying drugs targeting ß- and γ-secretase pathways seeking a decrease in the production of toxic Aß peptides have failed in clinics. It has been demonstrated that the metalloproteinase meprin ß acts as an alternative ß-secretase, capable of generating truncated Aß2-x peptides that have been described to be increased in AD patients. This indicates an important ß-site cleaving enzyme 1 (BACE-1)-independent contribution of the metalloprotease meprin ß within the amyloidogenic pathway and may lead to novel drug targeting avenues. However, meprin ß itself is embedded in a complex regulatory network. Remarkably, the anti-amyloidogenic α-secretase a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a direct competitor for APP at the cell surface, but also a sheddase of inactive pro-meprin ß. Overall, we highlight the current cellular, molecular and structural understanding of meprin ß as alternative ß-secretase within the complex protease web, regulating APP processing in health and disease.


Assuntos
Proteína ADAM10/metabolismo , Metaloendopeptidases/metabolismo , Proteína ADAM10/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Metaloendopeptidases/química , Presenilina-1/metabolismo , Proteólise , Serina Endopeptidases/metabolismo
18.
Acta Neuropathol ; 137(2): 239-257, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30426203

RESUMO

Brain accumulation and aggregation of amyloid-ß (Aß) peptides is a critical step in the pathogenesis of Alzheimer's disease (AD). Full-length Aß peptides (mainly Aß1-40 and Aß1-42) are produced through sequential proteolytic cleavage of the amyloid precursor protein (APP) by ß- and γ-secretases. However, studies of autopsy brain samples from AD patients have demonstrated that a large fraction of insoluble Aß peptides are truncated at the N-terminus, with Aß4-x peptides being particularly abundant. Aß4-x peptides are highly aggregation prone, but their origin and any proteases involved in their generation are unknown. We have identified a recognition site for the secreted metalloprotease ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4) in the Aß peptide sequence, which facilitates Aß4-x peptide generation. Inducible overexpression of ADAMTS4 in HEK293 cells resulted in the secretion of Aß4-40 but unchanged levels of Aß1-x peptides. In the 5xFAD mouse model of amyloidosis, Aß4-x peptides were present not only in amyloid plaque cores and vessel walls, but also in white matter structures co-localized with axonal APP. In the ADAMTS4-/- knockout background, Aß4-40 levels were reduced confirming a pivotal role of ADAMTS4 in vivo. Surprisingly, in the adult murine brain, ADAMTS4 was exclusively expressed in oligodendrocytes. Cultured oligodendrocytes secreted a variety of Aß species, but Aß4-40 peptides were absent in cultures derived from ADAMTS4-/- mice indicating that the enzyme was essential for Aß4-x production in this cell type. These findings establish an enzymatic mechanism for the generation of Aß4-x peptides. They further identify oligodendrocytes as a source of these highly amyloidogenic Aß peptides.


Assuntos
Proteína ADAMTS4/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oligodendroglia/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Oligodendroglia/patologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia
19.
Brain Behav Immun ; 82: 145-159, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401302

RESUMO

Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aß40 and Aß42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Interleucina-6/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos , Placa Amiloide/patologia , Transdução de Sinais
20.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357561

RESUMO

Interleukin-11 (IL-11) has been associated with inflammatory conditions, bone homeostasis, hematopoiesis, and fertility. So far, these functions have been linked to classical IL-11 signaling via the membrane bound receptor (IL-11R). However, a signaling cascade via the soluble IL-11R (sIL-11R), generated by proteolytic cleavage, can also be induced. This process is called IL-11 trans-signaling. A disintegrin and metalloprotease 10 (ADAM10) and neutrophil elastase were described as ectodomain sheddases of the IL-11R, thereby inducing trans-signaling. Furthermore, previous studies employing approaches for the stimulation and inhibition of endogenous ADAM-proteases indicated that ADAM10, but not ADAM17, can cleave the IL-11R. Herein, we show that several metalloproteases, namely ADAM9, ADAM10, ADAM17, meprin ß, and membrane-type 1 matrix metalloprotease/matrix metalloprotease-14 (MT1-MMP/MMP-14) when overexpressed are able to shed the IL-11R. All sIL-11R ectodomains were biologically active and capable of inducing signal transducer and activator of transcription 3 (STAT3) phosphorylation in target cells. The difference observed for ADAM10/17 specificity compared to previous studies can be explained by the different approaches used, such as stimulation of protease activity or making use of cells with genetically deleted enzymes.


Assuntos
Proteínas ADAM/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloendopeptidases/metabolismo , Receptores de Interleucina-11/metabolismo , Proteínas ADAM/química , Humanos , Metaloproteinase 14 da Matriz/química , Metaloendopeptidases/química , Fosforilação , Proteólise , Receptores de Interleucina-11/química , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA