Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Infect Immun ; 89(12): e0050821, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34543124

RESUMO

Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer-related death in the United States, with few effective treatments available and only 10% of those diagnosed surviving 5 years. Although immunotherapeutics is a growing field of study in cancer biology, there has been little progress in its use for the treatment of pancreatic cancer. Pancreatic cancer is considered a nonimmunogenic tumor because the tumor microenvironment does not easily allow for the immune system, even when stimulated, to attack the cancer. Infection with the protozoan parasite Toxoplasma gondii has been shown to enhance the immune response to clear cancer tumors. A subset of T. gondii proteins called soluble Toxoplasma antigen (STAg) contains an immunodominant protein called profilin. Both STAg and profilin have been shown to stimulate an immune response that reduces viral, bacterial, and parasitic burdens. Here, we use STAg and profilin to treat pancreatic cancer in a KPC mouse-derived allograft murine model. These mice exhibit pancreatic cancer with both Kras and P53 mutations as subcutaneous tumors. Pancreatic cancer tumors in C57BL/6J mice with a wild-type background showed a significant response to treatment with either profilin or STAg, exhibiting a decrease in tumor volume accompanied by an influx of CD4+ and CD8+ T cells into the tumors. Both IFN-γ-/- mice and Batf3-/- mice, which lack conventional dendritic cells, failed to show significant decreases in tumor volumes when treated. These results indicate that gamma interferon (IFN-γ) and dendritic cells may play critical roles in the immune response necessary to treat pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Proteínas de Protozoários/farmacologia , Toxoplasma , Aloenxertos , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Proteínas de Protozoários/imunologia , Toxoplasma/química , Toxoplasma/metabolismo
2.
J Immunol ; 199(5): 1933-1941, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754680

RESUMO

Colorectal cancer originates within immunologically complex microenvironments. To date, the benefits of immunotherapy have been modest, except in neoantigen-laden mismatch repair-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. In this article, we report that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) strongly correlated with CD8+ T cell infiltration in colorectal cancer, regardless of mismatch repair status. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10-fold) CD8+ T cell infiltration. Tumor-intrinsic WNT pathway activation was associated with CD8+ T cell exclusion and VCAN accumulation. In addition to regulating VCAN levels at the tumor site, VCAN proteolysis results in the generation of bioactive fragments with novel functions (VCAN-derived matrikines). Versikine, a VCAN-derived matrikine, enhanced the generation of CD103+CD11chiMHCIIhi conventional dendritic cells (cDCs) from Flt3L-mobilized primary bone marrow-derived progenitors, suggesting that VCAN proteolysis may promote differentiation of tumor-seeding DC precursors toward IRF8- and BATF3-expressing cDCs. Intratumoral BATF3-dependent DCs are critical determinants for T cell antitumor immunity, effector T cell trafficking to the tumor site, and response to immunotherapies. Our findings provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker and VCAN-derived matrikines as novel immunotherapy agents.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Células Dendríticas/imunologia , Matriz Extracelular/imunologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Versicanas/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Movimento Celular , Células Cultivadas , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Proteínas Repressoras/metabolismo , Microambiente Tumoral
3.
Mol Cancer Ther ; 18(2): 346-355, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425131

RESUMO

PIK3CA mutations are common in clinical molecular profiling, yet an effective means to target these cancers has yet to be developed. MTORC1 inhibitors are often used off-label for patients with PIK3CA mutant cancers with only limited data to support this approach. Here we describe a cohort of patients treated with cancers possessing mutations activating the PI3K signaling cascade with minimal benefit to treatment with the MTORC1 inhibitor everolimus. Previously, we demonstrated that dual PI3K/mTOR inhibition could decrease proliferation, induce differentiation, and result in a treatment response in APC and PIK3CA mutant colorectal cancer. However, reactivation of AKT was identified, indicating that the majority of the benefit may be secondary to MTORC1/2 inhibition. TAK-228, an MTORC1/2 inhibitor, was compared with dual PI3K/mTOR inhibition using BEZ235 in murine colorectal cancer spheroids. A reduction in spheroid size was observed with TAK-228 and BEZ235 (-13% and -14%, respectively) compared with an increase of >200% in control (P < 0.001). These spheroids were resistant to MTORC1 inhibition. In transgenic mice possessing Pik3ca and Apc mutations, BEZ235 and TAK-228 resulted in a median reduction in colon tumor size of 19% and 20%, respectively, with control tumors having a median increase of 18% (P = 0.02 and 0.004, respectively). This response correlated with a decrease in the phosphorylation of 4EBP1 and RPS6. MTORC1/2 inhibition is sufficient to overcome resistance to everolimus and induce a treatment response in PIK3CA mutant colorectal cancers and deserves investigation in clinical trials and in future combination regimens.


Assuntos
Benzoxazóis/administração & dosagem , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mutação , Pirimidinas/administração & dosagem , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/genética , Feminino , Humanos , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Pirimidinas/farmacologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 25(17): 5376-5387, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175091

RESUMO

PURPOSE: Cancer treatment is limited by inaccurate predictors of patient-specific therapeutic response. Therefore, some patients are exposed to unnecessary side effects and delays in starting effective therapy. A clinical tool that predicts treatment sensitivity for individual patients is needed. EXPERIMENTAL DESIGN: Patient-derived cancer organoids were derived across multiple histologies. The histologic characteristics, mutation profile, clonal structure, and response to chemotherapy and radiation were assessed using bright-field and optical metabolic imaging on spheroid and single-cell levels, respectively. RESULTS: We demonstrate that patient-derived cancer organoids represent the cancers from which they were derived, including key histologic and molecular features. These cultures were generated from numerous cancers, various biopsy sample types, and in different clinical settings. Next-generation sequencing reveals the presence of subclonal populations within the organoid cultures. These cultures allow for the detection of clonal heterogeneity with a greater sensitivity than bulk tumor sequencing. Optical metabolic imaging of these organoids provides cell-level quantification of treatment response and tumor heterogeneity allowing for resolution of therapeutic differences between patient samples. Using this technology, we prospectively predict treatment response for a patient with metastatic colorectal cancer. CONCLUSIONS: These studies add to the literature demonstrating feasibility to grow clinical patient-derived organotypic cultures for treatment effectiveness testing. Together, these culture methods and response assessment techniques hold great promise to predict treatment sensitivity for patients with cancer undergoing chemotherapy and/or radiation.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Organoides/efeitos dos fármacos , Organoides/efeitos da radiação , Humanos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neoplasias/metabolismo , Neoplasias/patologia , Organoides/metabolismo , Organoides/patologia , Medicina de Precisão/métodos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos da radiação
5.
Mol Cancer Res ; 15(3): 317-327, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28184015

RESUMO

Therapeutic targeting of the PI3K pathway is an active area of research in multiple cancer types, including breast and endometrial cancers. This pathway is commonly altered in cancer and plays an integral role in numerous vital cellular functions. Mutations in the PIK3CA gene, resulting in a constitutively active form of PI3K, often occur in colorectal cancer, though the population of patients who would benefit from targeting this pathway has yet to be identified. In human colorectal cancers, PIK3CA mutations most commonly occur concomitantly with loss of adenomatous polyposis coli (APC). Here, treatment strategies are investigated that target the PI3K pathway in colon cancers with mutations in APC and PIK3CA Colorectal cancer spheroids with Apc and Pik3ca mutations were generated and characterized confirming that these cultures represent the tumors from which they were derived. Pan and alpha isomer-specific PI3K inhibitors did not induce a significant treatment response, whereas the dual PI3K/mTOR inhibitors BEZ235 and LY3023414 induced a dramatic treatment response through decreased cellular proliferation and increased differentiation. The significant treatment responses were confirmed in mice with Apc and Pik3ca-mutant colon cancers as measured using endoscopy with a reduction in median lumen occlusion of 53% with BEZ235 and a 24% reduction with LY3023414 compared with an increase of 53% in controls (P < 0.001 and P = 0.03, respectively). This response was also confirmed with 18F-FDG microPET/CT imaging.Implications: Spheroid models and transgenic mice suggest that dual PI3K/mTOR inhibition is a potential treatment strategy for APC and PIK3CA-mutant colorectal cancers. Thus, further clinical studies of dual PI3K/mTOR inhibitors are warranted in colorectal cancers with these mutations. Mol Cancer Res; 15(3); 1-11. ©2016 AACR.

6.
PLoS One ; 11(2): e0148730, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863299

RESUMO

The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (ß-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.


Assuntos
Adenocarcinoma/genética , Neoplasias do Colo/genética , Fosfatidilinositol 3-Quinases/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carga Tumoral/efeitos dos fármacos
7.
Cancer Prev Res (Phila) ; 8(10): 952-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276752

RESUMO

Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Genes APC , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/patologia , Adenoma/patologia , Animais , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA