Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2321024121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683984

RESUMO

Reconstructing the absolute chronology of Jerusalem during the time it served as the Judahite Kingdom's capital is challenging due to its dense, still inhabited urban nature and the plateau shape of the radiocarbon calibration curve during part of this period. We present 103 radiocarbon dates from reliable archaeological contexts in five excavation areas of Iron Age Jerusalem, which tie between archaeology and biblical history. We exploit Jerusalem's rich past, including textual evidence and vast archaeological remains, to overcome difficult problems in radiocarbon dating, including establishing a detailed chronology within the long-calibrated ranges of the Hallstatt Plateau and recognizing short-lived regional offsets in atmospheric 14C concentrations. The key to resolving these problems is to apply stringent field methodologies using microarchaeological methods, leading to densely radiocarbon-dated stratigraphic sequences. Using these sequences, we identify regional offsets in atmospheric 14C concentrations c. 720 BC, and in the historically secure stratigraphic horizon of the Babylonian destruction in 586 BC. The latter is verified by 100 single-ring measurements between 624 to 572 BC. This application of intense 14C dating sheds light on the reconstruction of Jerusalem in the Iron Age. It provides evidence for settlement in the 12th to 10th centuries BC and that westward expansion had already begun by the 9th century BC, with extensive architectural projects undertaken throughout the city in this period. This was followed by significant damage and rejuvenation of the city subsequent to the mid-eight century BC earthquake, after which the city was heavily fortified and continued to flourish until the Babylonian destruction.

2.
Sci Adv ; 9(39): eadh4973, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756412

RESUMO

Compound earthquakes involving simultaneous ruptures along multiple faults often define a region's upper threshold of maximum magnitude. Yet, the potential for linked faulting remains poorly understood given the infrequency of these events in the historic era. Geological records provide longer perspectives, although temporal uncertainties are too broad to clearly pinpoint single multifault events. Here, we use dendrochronological dating and a cosmogenic radiation pulse to constrain the death dates of earthquake-killed trees along two adjacent fault zones near Seattle, Washington to within a 6-month period between the 923 and 924 CE growing seasons. Our narrow constraints conclusively show linked rupturing that occurred either as a single composite earthquake of estimated magnitude 7.8 or as a closely spaced double earthquake sequence with estimated magnitudes of 7.5 and 7.3. These scenarios, which are not recognized in current hazard models, increase the maximum earthquake size needed for seismic preparedness and engineering design within the Puget Sound region of >4 million residents.

3.
Nat Commun ; 13(1): 1196, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256613

RESUMO

The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14C, 10Be and 36Cl have been found. Analyzing annual 14C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14C occurring in 7176 and 5259 BCE. The ~2% increases of atmospheric 14C recorded for both events exceed all previously known 14C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which may threaten modern infrastructure.


Assuntos
Prótons , Atividade Solar , Planeta Terra , Alemanha , Árvores
4.
Sci Adv ; 4(8): eaar8241, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30116779

RESUMO

The mid-second millennium BCE eruption of Thera (Santorini) offers a critically important marker horizon to synchronize archaeological chronologies of the Aegean, Egypt, and the Near East and to anchor paleoenvironmental records from ice cores, speleothems, and lake sediments. Precise and accurate dating for the event has been the subject of many decades of research. Using calendar-dated tree rings, we created an annual resolution radiocarbon time series 1700-1500 BCE to validate, improve, or more clearly define the limitations for radiocarbon calibration of materials from key eruption contexts. Results show an offset from the international radiocarbon calibration curve, which indicates a shift in the calibrated age range for Thera toward the 16th century BCE. This finding sheds new light on the long-running debate focused on a discrepancy between radiocarbon (late 17th-early 16th century BCE) and archaeological (mid 16th-early 15th century BCE) dating evidence for Thera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA