Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Ecol ; 31(18): 4797-4817, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869812

RESUMO

Geologically recent radiations can shed light on speciation processes, but incomplete lineage sorting and introgressive gene flow render accurate evolutionary reconstruction and interpretation challenging. Independently evolving metapopulations of low dispersal taxa may provide an additional level of phylogeographic information, given sufficiently broad sampling and genome-wide sequencing. Evolution in the marine brown algal genus Fucus in the south-eastern North Atlantic was shaped by Quaternary climate-driven range shifts. Over this timescale, divergence and speciation occurred against a background of expansion-contraction cycles from multiple refugia, together with mating-system shifts from outcrossing (dioecy) to selfing hermaphroditism. We tested the hypothesis that peripheral isolation of range edge (dioecious) F. vesiculosus led to parapatric speciation and radiation of hermaphrodite lineages. Species tree methods using 876 single-copy nuclear genes and extensive geographic coverage produced conflicting topologies with respect to geographic clades of F. vesiculosus. All methods, however, revealed a new and early diverging hermaphrodite species, Fucus macroguiryi sp. nov. Both the multispecies coalescent and polymorphism-aware models (in contrast to concatenation) support sequential paraphyly in F. vesiculosus resulting from distinct evolutionary processes. Our results support (1) peripheral isolation of the southern F. vesiculosus clade prior to parapatric speciation and radiation of hermaphrodite lineages-a "low-latitude species pump". (2) Directional introgressive gene flow into F. vesiculosus around the present-day secondary contact zone (sympatric-allopatric boundary) between dioecious/hermaphrodite lineages as hermaphrodites expanded northwards, supported by concordance analysis and statistical tests of introgression. (3) Species boundaries in the extensive sympatric range are probably maintained by reproductive system (selfing in hermaphrodites) and reinforcement.


Assuntos
Fucus , Fluxo Gênico , Fucus/genética , Filogenia , Filogeografia , Reprodução/genética , Simpatria
2.
Nature ; 530(7590): 331-5, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814964

RESUMO

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma de Planta/genética , Água do Mar , Zosteraceae/genética , Aclimatação/genética , Parede Celular/química , Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oceanos e Mares , Osmorregulação/genética , Filogenia , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Pólen/metabolismo , Salinidade , Tolerância ao Sal/genética , Alga Marinha/genética , Terpenos/metabolismo
3.
BMC Evol Biol ; 17(1): 30, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114901

RESUMO

BACKGROUND: Molecular markers are revealing a much more diverse and evolutionarily complex picture of marine biodiversity than previously anticipated. Cryptic and/or endemic marine species are continually being found throughout the world oceans, predominantly in inconspicuous tropical groups but also in larger, canopy-forming taxa from well studied temperate regions. Interspecific hybridization has also been found to be prevalent in many marine groups, for instance within dense congeneric assemblages, with introgressive gene-flow being the most common outcome. Here, using a congeneric phylogeographic approach, we investigated two monotypic and geographically complementary sister genera of north-east Pacific intertidal seaweeds (Hesperophycus and Pelvetiopsis), for which preliminary molecular tests revealed unexpected conflicts consistent with unrecognized cryptic diversity and hybridization. RESULTS: The three recovered mtDNA clades did not match a priori species delimitations. H. californicus was congruent, whereas widespread P. limitata encompassed two additional narrow-endemic species from California - P. arborescens (here genetically confirmed) and P. hybrida sp. nov. The congruence between the genotypic clusters and the mtDNA clades was absolute. Fixed heterozygosity was apparent in a high proportion of loci in P. limitata and P. hybrida, with genetic analyses showing that the latter was composed of both H. californicus and P. arborescens genomes. All four inferred species could be distinguished based on their general morphology. CONCLUSIONS: This study confirmed additional diversity and reticulation within NE Pacific Hesperophycus/Pelvetiopsis, including the validity of the much endangered, modern climatic relict P. arborescens, and the identification of a new, stable allopolyploid species (P. hybrida) with clearly discernable ancestry (♀ H. californicus x ♂ P. arborescens), morphology, and geographical distribution. Allopolyploid speciation is otherwise completely unknown in brown seaweeds, and its unique occurrence within this genus (P. limitata possibly representing a second example) remains enigmatic. The taxonomic separation of Hesperophycus and Pelvetiopsis is not supported and the genera should be synonymized; we retain only the latter. The transitional coastline between Point Conception and Monterey Bay represented a diversity hotspot for the genus and the likely sites of extraordinary evolutionary events of allopolyploid speciation at sympatric range contact zones. This study pinpoints how much diversity (and evolutionary processes) potentially remains undiscovered even on a conspicuous seaweed genus from the well-studied Californian intertidal shores let alone in other, less studied marine groups and regions/depths.


Assuntos
Alga Marinha/genética , Animais , Biodiversidade , Evolução Biológica , California , DNA Mitocondrial/genética , Fluxo Gênico , Oceano Pacífico , Filogenia , Filogeografia , Poliploidia , Alga Marinha/classificação , Análise de Sequência de DNA
4.
BMC Evol Biol ; 15: 100, 2015 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-26026663

RESUMO

BACKGROUND: Intraspecific variability is seen as a central component of biodiversity. We investigated genetic differentiation, contemporary patterns of demographic connectivity and intraspecific variation of adaptive behavioural traits in two lineages of an intertidal mussel (Perna perna) across a tropical/subtropical biogeographic transition. RESULTS: Microsatellite analyses revealed clear genetic differentiation between western (temperate) and eastern (subtropical/tropical) populations, confirming divergence previously detected with mitochondrial (COI) and nuclear (ITS) markers. Gene flow between regions was predominantly east-to-west and was only moderate, with higher heterozygote deficiency where the two lineages co-occur. This can be explained by differential selection and/or oceanographic dynamics acting as a barrier to larval dispersal. Common garden experiments showed that gaping (periodic closure and opening of the shell) and attachment to the substratum differed significantly between the two lineages. Western individuals gaped more and attached less strongly to the substratum than eastern ones. CONCLUSIONS: These behavioural differences are consistent with the geographic and intertidal distributions of each lineage along sharp environmental clines, indicating their strong adaptive significance. We highlight the functional role of diversity below the species level in evolutionary trends and the need to understand this when predicting biodiversity responses to environmental change.


Assuntos
Bivalves/classificação , Bivalves/genética , África Austral , Animais , Biodiversidade , Evolução Biológica , Bivalves/fisiologia , Ecossistema , Fluxo Gênico
5.
BMC Biol ; 11: 6, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23342999

RESUMO

BACKGROUND: Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species.We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. RESULTS: Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. CONCLUSIONS: We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).


Assuntos
Mudança Climática , Fucus/genética , Genes de Plantas , Biologia Marinha , Repetições de Microssatélites/genética
6.
Sci Rep ; 14(1): 11071, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745036

RESUMO

The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.


Assuntos
Variação Genética , Kelp , Filogenia , Kelp/genética , Kelp/classificação , Filogeografia , Repetições de Microssatélites/genética , Hibridização Genética , DNA Mitocondrial/genética , África Austral
7.
BMC Genomics ; 14: 294, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23634783

RESUMO

BACKGROUND: The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious - hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. RESULTS: Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. CONCLUSIONS: Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant heterogametic animal models. This work identifies an annotated set of F. vesiculosus gene products that potentially regulate sexual reproduction and may contribute to prezygotic isolation, one essential step towards developing tools for a functional understanding of species isolation and differentiation.


Assuntos
Proteínas de Algas/biossíntese , Fucus/genética , Fucus/fisiologia , Expressão Gênica , Viés , Evolução Molecular , Fucus/metabolismo , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Reprodução , Transcriptoma
8.
Sci Rep ; 13(1): 5645, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024658

RESUMO

The impact of climate change on biodiversity has stimulated the need to understand environmental stress responses, particularly for ecosystem engineers whose responses to climate affect large numbers of associated organisms. Distinct species differ substantially in their resilience to thermal stress but there are also within-species variations in thermal tolerance for which the molecular mechanisms underpinning such variation remain largely unclear. Intertidal mussels are well-known for their role as ecosystem engineers. First, we exposed two genetic lineages of the intertidal mussel Perna perna to heat stress treatments in air and water. Next, we ran a high throughput RNA sequencing experiment to identify differences in gene expression between the thermally resilient eastern lineage and the thermally sensitive western lineage. We highlight different thermal tolerances that concord with their distributional ranges. Critically, we also identified lineage-specific patterns of gene expression under heat stress and revealed intraspecific differences in the underlying transcriptional pathways in response to warmer temperatures that are potentially linked to the within-species differences in thermal tolerance. Beyond the species, we show how unravelling within-species variability in mechanistic responses to heat stress promotes a better understanding of global evolutionary trajectories of the species as a whole in response to changing climate.


Assuntos
Bivalves , Ecossistema , Animais , Transcriptoma , Biodiversidade , Bivalves/genética , Temperatura , Mudança Climática
9.
Sci Rep ; 13(1): 12046, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491385

RESUMO

The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.


Assuntos
Kelp , Macrocystis , Macrocystis/genética , Ecossistema , Biodiversidade , Florestas , Mudança Climática , Kelp/genética
10.
Ecol Evol ; 13(1): e9740, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36789139

RESUMO

The accurate delimitation of species boundaries in nonbilaterian marine taxa is notoriously difficult, with consequences for many studies in ecology and evolution. Anthozoans are a diverse group of key structural organisms worldwide, but the lack of reliable morphological characters and informative genetic markers hampers our ability to understand species diversification. We investigated population differentiation and species limits in Atlantic (Iberian Peninsula) and Mediterranean lineages of the octocoral genus Paramuricea previously identified as P. clavata. We used a diverse set of molecular markers (microsatellites, RNA-seq derived single-copy orthologues [SCO] and mt-mutS [mitochondrial barcode]) at 49 locations. Clear segregation of Atlantic and Mediterranean lineages was found with all markers. Species-tree estimations based on SCO strongly supported these two clades as distinct, recently diverged sister species with incomplete lineage sorting, P. cf. grayi and P. clavata, respectively. Furthermore, a second putative (or ongoing) speciation event was detected in the Atlantic between two P. cf. grayi color morphotypes (yellow and purple) using SCO and supported by microsatellites. While segregating P. cf. grayi lineages showed considerable geographic structure, dominating circalittoral communities in southern (yellow) and western (purple) Portugal, their occurrence in sympatry at some localities suggests a degree of reproductive isolation. Overall, our results show that previous molecular and morphological studies have underestimated species diversity in Paramuricea occurring in the Iberian Peninsula, which has important implications for conservation planning. Finally, our findings validate the usefulness of phylotranscriptomics for resolving evolutionary relationships in octocorals.

11.
Sci Rep ; 13(1): 9112, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277448

RESUMO

The transport of passively dispersed organisms across tropical margins remains poorly understood. Hypotheses of oceanographic transportation potential lack testing with large scale empirical data. To address this gap, we used the seagrass species, Halodule wrightii, which is unique in spanning the entire tropical Atlantic. We tested the hypothesis that genetic differentiation estimated across its large-scale biogeographic range can be predicted by simulated oceanographic transport. The alternative hypothesis posits that dispersal is independent of ocean currents, such as transport by grazers. We compared empirical genetic estimates and modelled predictions of dispersal along the distribution of H. wrightii. We genotyped eight microsatellite loci on 19 populations distributed across Atlantic Africa, Gulf of Mexico, Caribbean, Brazil and developed a biophysical model with high-resolution ocean currents. Genetic data revealed low gene flow and highest differentiation between (1) the Gulf of Mexico and two other regions: (2) Caribbean-Brazil and (3) Atlantic Africa. These two were more genetically similar despite separation by an ocean. The biophysical model indicated low or no probability of passive dispersal among populations and did not match the empirical genetic data. The results support the alternative hypothesis of a role for active dispersal vectors like grazers.


Assuntos
Fluxo Gênico , Oceanografia , Golfo do México , Genótipo , Região do Caribe , Genética Populacional
12.
BMC Evol Biol ; 12: 78, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22672720

RESUMO

BACKGROUND: Factors promoting the emergence of sharp phylogeographic breaks include restricted dispersal, habitat discontinuity, physical barriers, disruptive selection, mating incompatibility, genetic surfing and secondary contact. Disentangling the role of each in any particular system can be difficult, especially when species are evenly distributed across transition zones and dispersal barriers are not evident. The estuarine seaweed Fucus ceranoides provides a good example of highly differentiated populations along its most persistent distributional range at the present rear edge of the species distribution, in NW Iberia. Intrinsic dispersal restrictions are obvious in this species, but have not prevented F. ceranoides from vastly expanding its range northwards following the last glaciation, implying that additional factors are responsible for the lack of connectivity between neighbouring southern populations. In this study we analyze 22 consecutive populations of F. ceranoides along NW Iberia to investigate the processes generating and maintaining the observed high levels of regional genetic divergence. RESULTS: Variation at seven microsatellite loci and at mtDNA spacer sequences was concordant in revealing that Iberian F. ceranoides is composed of three divergent genetic clusters displaying nearly disjunct geographical distributions. Structure and AFC analyses detected two populations with an admixed nuclear background. Haplotypic diversity was high in the W sector and very low in the N sector. Within each genetic cluster, population structure was also pervasive, although shallower. CONCLUSIONS: The deep divergence between sectors coupled with the lack of support for a role of oceanographic barriers in defining the location of breaks suggested 1) that the parapatric genetic sectors result from the regional reassembly of formerly vicariant sub-populations, and 2) that the genetic discontinuities at secondary contact zones (and elsewhere) are maintained despite normal migration rates. We conclude that colonization and immigration, as sources of gene-flow, have very different genetic effects. Migration between established populations is effectively too low to prevent their differentiation by drift or to smooth historical differences inherited from the colonization process. F. ceranoides, but possibly low-dispersal species in general, appear to be unified to a large extent by historical, non-equilibrium processes of extinction and colonization, rather than by contemporary patterns of gene flow.


Assuntos
Evolução Molecular , Fucus/genética , Variação Genética , Filogeografia , DNA de Algas/genética , DNA Mitocondrial/genética , Fluxo Gênico , Genética Populacional , Repetições de Microssatélites , Alga Marinha/genética , Análise de Sequência de DNA , Espanha
13.
Mitochondrial DNA B Resour ; 7(11): 1985-1988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406821

RESUMO

The Gray's sea fan, Paramuricea grayi (Johnson, 1861), typically inhabits deep littoral and circalittoral habitats of the eastern temperate and tropical Atlantic Ocean. Along the Iberian Peninsula, where P. grayi is a dominant constituent of circalittoral coral gardens, two segregating lineages (yellow and purple morphotypes) were recently identified using single-copy nuclear orthologues. The mitochondrial genomes of 9 P. grayi individuals covering both color morphotypes were assembled from RNA-seq data, using samples collected at three sites in southern (Sagres and Tavira) and western (Cape Espichel) Portugal. The complete circular mitogenome is 18,668 bp in length, has an A + T-rich base composition (62.5%) and contains the 17 genes typically found in Octocorallia: 14 protein-coding genes (atp6, atp8, cob, cox1-3, mt-mutS, nad1-6, and nad4L), the small and large subunit rRNAs (rns and rnl), and one transfer RNA (trnM). The mitogenomes were nearly identical for all specimens, though we identified a noteworthy polymorphism (two SNPs 9 bp apart) in the mt-mutS of one purple individual that is shared with the sister species P. clavata. The mitogenomes of the two species have a pairwise sequence identity of 99.0%, with nad6 and mt-mutS having the highest rates of non-synonymous substitutions.

14.
BMC Evol Biol ; 11: 33, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21281515

RESUMO

BACKGROUND: Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. RESULTS: Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence) and the Shared Allele (SAD; based on alleles identity) distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. CONCLUSION: These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization.


Assuntos
Fucus/genética , Hibridização Genética , Polimorfismo Genético , Evolução Molecular , Genótipo , Repetições de Microssatélites
15.
BMC Evol Biol ; 11: 371, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22188734

RESUMO

BACKGROUND: Understanding the processes driving speciation in marine ecosystems remained a challenge until recently, due to the unclear nature of dispersal boundaries. However, recent evidence for marine adaptive radiations and ecological speciation, as well as previously undetected patterns of cryptic speciation is overturning this view. Here, we use multi-gene phylogenetics to infer the family-level evolutionary history of Fucaceae (intertidal brown algae of the northern Pacific and Atlantic) in order to investigate recent and unique patterns of radiative speciation in the genus Fucus in the Atlantic, in contrast with the mainly monospecific extant genera. RESULTS: We developed a set of markers from 13 protein coding genes based on polymorphic cDNA from EST libraries, which provided novel resolution allowing estimation of ancestral character states and a detailed reconstruction of the recent radiative history. Phylogenetic reconstructions yielded similar topologies and revealed four independent trans-Arctic colonization events by Fucaceae lineages, two of which also involved transitions from hermaphroditism to dioecy associated with Atlantic invasions. More recently, reversion of dioecious ancestral lineages towards hermaphroditism has occurred in the genus Fucus, particularly coinciding with colonization of more extreme habitats. Novel lineages in the genus Fucus were also revealed in association with southern habitats. These most recent speciation events occurred during the Pleistocene glaciations and coincided with a shift towards selfing mating systems, generally southward shifts in distribution, and invasion of novel habitats. CONCLUSIONS: Diversification of the family occurred in the Late-Mid Miocene, with at least four independent trans-Artic lineage crossings coincident with two reproductive mode transitions. The genus Fucus arose in the Pliocene but radiated within a relatively short time frame about 2.5 million years ago. Current species distributions of Fucus suggest that climatic factors promoted differentiation between the two major clades, while the recent and rapid species radiation in the temperate clade during Pleistocene glacial cycles coincided with several potential speciation drivers.


Assuntos
Especiação Genética , Phaeophyceae/classificação , Filogenia , Teorema de Bayes , DNA Complementar/genética , Etiquetas de Sequências Expressas , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Phaeophyceae/genética , Análise de Sequência de DNA
16.
Mol Ecol ; 19(21): 4812-22, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20958817

RESUMO

For many taxa, introgression represents an important source of genetic variation, but the specific contexts allowing locally introgressed material to spread and largely replace native allelic lineages throughout a species range remain poorly understood. Recent demographic-genetic simulations of spatial expansions show that the stochastic surfing of alien alleles during range expansions may constitute a general mechanism leading to extensive introgression, but empirical evidence remain scarce and difficult to distinguish from selection. In this study, we report a compelling case of such a phenomenon in the estuarine alga Fucus ceranoides. We re-assessed the phylogenetic relationships among F. ceranoides and its marine congeners F. vesiculosus and F. spiralis using nuclear, mitochondrial and chloroplast sequence data, and conducted a mtDNA phylogeographic survey in F. ceranoides. Our phylogenetic analyses revealed a recent and asymmetric introgression of a single F. vesiculosus cytoplasm into F. ceranoides. The phylogeographic scope of introgression was striking, with native and introgressed mtDNA displaying disjunct distributions south and north of the English Channel. A putative Pleistocene climatic refugium was detected in NW Iberia, and the extensive and exclusive spread of the alien cytoplasm throughout Northern Europe was inferred to have occurred concurrently with the species post-glacial, northwards range expansion. This massive spread of a foreign organelle throughout the entire post-glacial recolonization range represents good empirical evidence of an alien cytoplasm surfing the wave of a range expansion and the first description of such a phenomenon in the marine realm.


Assuntos
Fucus/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Filogenia , Filogeografia , DNA de Cloroplastos/química , DNA Mitocondrial/genética , Europa (Continente) , Variação Genética , Haplótipos , Análise de Sequência de DNA
17.
PLoS One ; 15(6): e0235388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32604405

RESUMO

The plasticity of different kelp populations to heat stress has seldom been investigated excluding environmental effects due to thermal histories, by raising a generation under common garden conditions. Comparisons of populations in the absence of environmental effects allow unbiased quantification of the meta-population adaptive potential and resolution of population-specific differentiation. Following this approach, we tested the hypothesis that genetically distinct arctic and temperate kelp exhibit different thermal phenotypes, by comparing the capacity of their microscopic life stages to recover from elevated temperatures. Gametophytes of Laminaria digitata (Arctic and North Sea) grown at 15°C for 3 years were subjected to common garden conditions with static or dynamic (i.e., gradual) thermal treatments ranging between 15 and 25°C and also to darkness. Gametophyte growth and survival during thermal stress conditions, and subsequent sporophyte recruitment at two recovery temperatures (5 and 15°C), were investigated. Population-specific responses were apparent; North Sea gametophytes exhibited higher growth rates and greater sporophyte recruitment than those from the Arctic when recovering from high temperatures, revealing differential thermal adaptation. All gametophytes performed poorly after recovery from a static 8-day exposure at 22.5°C compared to the response under a dynamic thermal treatment with a peak temperature of 25°C, demonstrating the importance of gradual warming and/or acclimation time in modifying thermal limits. Recovery temperature markedly affected the capacity of gametophytes to reproduce following high temperatures, regardless of the population. Recovery at 5°C resulted in higher sporophyte production following a 15°C and 20°C static exposure, whereas recovery at 15°C was better for gametophyte exposures to static 22.5°C or dynamic heat stress to 25°C. The subtle performance differences between populations originating from sites with contrasting local in situ temperatures support our hypothesis that their thermal plasticity has diverged over evolutionary time scales.


Assuntos
Aclimatação/fisiologia , Resposta ao Choque Térmico/fisiologia , Laminaria/fisiologia , Regiões Árticas , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/fisiologia , Aquecimento Global , Temperatura Alta , Laminaria/crescimento & desenvolvimento , Mar do Norte , Fenótipo , Reprodução/fisiologia , Temperatura
18.
Ecol Evol ; 10(17): 9144-9177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953052

RESUMO

To understand the thermal plasticity of a coastal foundation species across its latitudinal distribution, we assess physiological responses to high temperature stress in the kelp Laminaria digitata in combination with population genetic characteristics and relate heat resilience to genetic features and phylogeography. We hypothesize that populations from Arctic and cold-temperate locations are less heat resilient than populations from warm distributional edges. Using meristems of natural L. digitata populations from six locations ranging between Kongsfjorden, Spitsbergen (79°N), and Quiberon, France (47°N), we performed a common-garden heat stress experiment applying 15°C to 23°C over eight days. We assessed growth, photosynthetic quantum yield, carbon and nitrogen storage, and xanthophyll pigment contents as response traits. Population connectivity and genetic diversity were analyzed with microsatellite markers. Results from the heat stress experiment suggest that the upper temperature limit of L. digitata is nearly identical across its distribution range, but subtle differences in growth and stress responses were revealed for three populations from the species' ecological range margins. Two populations at the species' warm distribution limit showed higher temperature tolerance compared to other populations in growth at 19°C and recovery from 21°C (Quiberon, France), and photosynthetic quantum yield and xanthophyll pigment responses at 23°C (Helgoland, Germany). In L. digitata from the northernmost population (Spitsbergen, Norway), quantum yield indicated the highest heat sensitivity. Microsatellite genotyping revealed all sampled populations to be genetically distinct, with a strong hierarchical structure between southern and northern clades. Genetic diversity was lowest in the isolated population of the North Sea island of Helgoland and highest in Roscoff in the English Channel. All together, these results support the hypothesis of moderate local differentiation across L. digitata's European distribution, whereas effects are likely too weak to ameliorate the species' capacity to withstand ocean warming and marine heatwaves at the southern range edge.

19.
PLoS One ; 14(9): e0219723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513596

RESUMO

In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.


Assuntos
Gametogênese/genética , Perfilação da Expressão Gênica , Haploidia , Phaeophyceae/genética , Transcriptoma , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Phaeophyceae/citologia , Phaeophyceae/metabolismo , Açúcares/metabolismo
20.
Evolution ; 73(1): 59-72, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30421788

RESUMO

Genome mergers between independently evolving lineages, via allopolyploidy, can potentially lead to instantaneous sympatric speciation. However, little is known about the consequences of allopolyploidy and the resultant "genome shock" on genome evolution and expression beyond the plant and fungal branches of the Tree of Life. The aim of this study was to compare substitution rates and gene expression patterns in two allopolyploid brown algae (Phaeophyceae and Heterokonta) and their progenitors in the genus Pelvetiopsis N. L. Gardner in the north-east Pacific, and to date their relationships. We used RNA-seq data, all potential orthologues, and putative single-copy loci for phylogenomic, divergence, and gene expression analyses. The multispecies coalescent placed the origin of allopolyploids in the late Pleistocene (0.35-0.05 Ma). Homoeologues displayed increased nonsynonymous divergence compared with parental orthologues, consistent with relaxed selective constraint following allopolyploidization, including for genes with no evidence of pseudogenization or neofunctionalization. Patterns of homoeologue-orthologue expression conservation and expression level dominance were largely shared with both natural plant and fungal allopolyploids. Our results provide further support for common cross-Kingdom patterns of allopolyploid genome evolution and transcriptional responses, here in the evolutionarily distinct marine heterokont brown algae.


Assuntos
Evolução Biológica , Phaeophyceae/genética , Poliploidia , Transcrição Gênica , California , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA