Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848513

RESUMO

Comparison of the 2007 EORTC/ISCL and the 2022 EORTC/ISCL/USCLC blood staging guidelines for cutaneous T-cell lymphoma at a single institution reveals the newer guidelines fail to detect a subset of Sézary syndrome patients with low blood burden.

2.
Biochem J ; 480(15): 1199-1216, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37477952

RESUMO

Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.


Assuntos
Neoplasias Pancreáticas , Proteínas Repressoras , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias Pancreáticas
3.
Blood ; 138(14): 1225-1236, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34115827

RESUMO

Cutaneous T-cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled representative samples of CTCLs from patients with diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. Two mutations have never been described in any cancer. Functionally, multiple mutations augment T-cell receptor-dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T-cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways that drive diverse disease phenotypes.


Assuntos
Linfoma Cutâneo de Células T/genética , Transcriptoma , Animais , Células Cultivadas , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Camundongos , Mutação , Oncogenes , Proteína Supressora de Tumor p53/genética
4.
J Virol ; 95(24): e0136821, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613786

RESUMO

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


Assuntos
COVID-19/virologia , Miócitos Cardíacos/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Catepsina B/metabolismo , Fusão Celular , Chlorocebus aethiops , Células-Tronco Embrionárias/metabolismo , Exocitose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Confocal , Serina Endopeptidases/metabolismo , Células Vero , Proteínas Virais/metabolismo , Internalização do Vírus , Replicação Viral
5.
J Exp Clin Cancer Res ; 43(1): 214, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090759

RESUMO

BACKGROUND: Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored. METHODS: The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays. RESULTS: Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8. CONCLUSION: Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.


Assuntos
Melanoma , Células Supressoras Mieloides , Microambiente Tumoral , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Humanos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Melanoma/patologia , Melanoma/metabolismo , Melanoma/imunologia , Melanoma/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL
6.
Cancer Res Commun ; 4(7): 1677-1689, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38896052

RESUMO

Aberrant activation of GLI transcription factors has been implicated in the pathogenesis of different tumor types including pancreatic ductal adenocarcinoma. However, the mechanistic link with established drivers of this disease remains in part elusive. In this study, using a new genetically engineered mouse model overexpressing constitutively active mouse form of GLI2 and a combination of genome-wide assays, we provide evidence of a novel mechanism underlying the interplay between KRAS, a major driver of pancreatic ductal adenocarcinoma development, and GLI2 to control oncogenic gene expression. These mice, also expressing KrasG12D, show significantly reduced median survival rate and accelerated tumorigenesis compared with the KrasG12D only expressing mice. Analysis of the mechanism using RNA sequencing demonstrate higher levels of GLI2 targets, particularly tumor growth-promoting genes, including Ccnd1, N-Myc, and Bcl2, in KrasG12D mutant cells. Furthermore, chromatin immunoprecipitation sequencing studies showed that in these cells KrasG12D increases the levels of trimethylation of lysine 4 of the histone 3 (H3K4me3) at the promoter of GLI2 targets without affecting significantly the levels of other major active chromatin marks. Importantly, Gli2 knockdown reduces H3K4me3 enrichment and gene expression induced by mutant Kras. In summary, we demonstrate that Gli2 plays a significant role in pancreatic carcinogenesis by acting as a downstream effector of KrasG12D to control gene expression.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Proteína Gli2 com Dedos de Zinco , Animais , Humanos , Camundongos , Carcinogênese , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Histonas/metabolismo , Histonas/genética , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transcrição Gênica , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
8.
PLoS One ; 18(3): e0282151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888581

RESUMO

BACKGROUND: SARS-CoV-2-mediated COVID-19 may cause sudden cardiac death (SCD). Factors contributing to this increased risk of potentially fatal arrhythmias include thrombosis, exaggerated immune response, and treatment with QT-prolonging drugs. However, the intrinsic arrhythmic potential of direct SARS-CoV-2 infection of the heart remains unknown. OBJECTIVE: To assess the cellular and electrophysiological effects of direct SARS-CoV-2 infection of the heart using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS: hiPSC-CMs were transfected with recombinant SARS-CoV-2 spike protein (CoV-2 S) or CoV-2 S fused to a modified Emerald fluorescence protein (CoV-2 S-mEm). Cell morphology was visualized using immunofluorescence microscopy. Action potential duration (APD) and cellular arrhythmias were measured by whole cell patch-clamp. Calcium handling was assessed using the Fluo-4 Ca2+ indicator. RESULTS: Transfection of hiPSC-CMs with CoV-2 S-mEm produced multinucleated giant cells (syncytia) displaying increased cellular capacitance (75±7 pF, n = 10 vs. 26±3 pF, n = 10; P<0.0001) consistent with increased cell size. The APD90 was prolonged significantly from 419±26 ms (n = 10) in untransfected hiPSC-CMs to 590±67 ms (n = 10; P<0.05) in CoV-2 S-mEm-transfected hiPSC-CMs. CoV-2 S-induced syncytia displayed delayed afterdepolarizations, erratic beating frequency, and calcium handling abnormalities including calcium sparks, large "tsunami"-like waves, and increased calcium transient amplitude. After furin protease inhibitor treatment or mutating the CoV-2 S furin cleavage site, cell-cell fusion was no longer evident and Ca2+ handling returned to normal. CONCLUSION: The SARS-CoV-2 spike protein can directly perturb both the cardiomyocyte's repolarization reserve and intracellular calcium handling that may confer the intrinsic, mechanistic substrate for the increased risk of SCD observed during this COVID-19 pandemic.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Cálcio/metabolismo , Furina/metabolismo , Síndrome do QT Longo/metabolismo , Pandemias , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Arritmias Cardíacas/metabolismo , Potenciais de Ação/fisiologia
9.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194924, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36842643

RESUMO

Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.


Assuntos
Adenosina Trifosfatases , Proteínas Hedgehog , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cancer Res ; 81(22): 5608-5610, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782322

RESUMO

The importance of the cross-talk between the genetic and epigenetic alterations promoting cancer development is well understood; however, the molecular details underlying the mechanism of how oncogenic signaling remodels the epigenome to generate a procancer transcriptome require further elucidation. The study by Zhang and colleagues in this issue of Cancer Research reveals a novel role for oncogenic mTOR signaling leading to the degradation of a prominent chromatin remodeler, ARID1a, establishing an altered, protumor chromatin landscape in hepatocellular carcinoma (HCC) controlling tumor deve-lopment and treatment resistance. These findings highlight oncogenic effects on chromatin remodelers as an important factor in both HCC pathobiology and therapeutic response. As strategies for cancer therapy begin to move in an increasingly individualized direction, increased knowledge into the impact of restoring the function of chromatin remodelers on response to therapy is warranted.See related article by Zhang et al., p. 5652.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA , Epigênese Genética , Humanos , Neoplasias Hepáticas/genética , Oncogenes , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
11.
Nat Med ; 26(11): 1788-1800, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188278

RESUMO

Ribonucleoprotein (RNP) granules are biomolecular condensates-liquid-liquid phase-separated droplets that organize and manage messenger RNA metabolism, cell signaling, biopolymer assembly, biochemical reactions and stress granule responses to cellular adversity. Dysregulated RNP granules drive neuromuscular degenerative disease but have not previously been linked to heart failure. By exploring the molecular basis of congenital dilated cardiomyopathy (DCM) in genome-edited pigs homozygous for an RBM20 allele encoding the pathogenic R636S variant of human RNA-binding motif protein-20 (RBM20), we discovered that RNP granules accumulated abnormally in the sarcoplasm, and we confirmed this finding in myocardium and reprogrammed cardiomyocytes from patients with DCM carrying the R636S allele. Dysregulated sarcoplasmic RBM20 RNP granules displayed liquid-like material properties, docked at precisely spaced intervals along cytoskeletal elements, promoted phase partitioning of cardiac biomolecules and fused with stress granules. Our results link dysregulated RNP granules to myocardial cellular pathobiology and heart failure in gene-edited pigs and patients with DCM caused by RBM20 mutation.


Assuntos
Cardiomiopatia Dilatada/genética , Miocárdio/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Alelos , Animais , Cardiomiopatia Dilatada/fisiopatologia , Reprogramação Celular , Modelos Animais de Doenças , Feminino , Edição de Genes , Humanos , Masculino , Mutação/genética , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Mensageiro/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Suínos
12.
Nat Commun ; 11(1): 1806, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286303

RESUMO

Primary cutaneous γδ T cell lymphomas (PCGDTLs) represent a heterogeneous group of uncommon but aggressive cancers. Herein, we perform genome-wide DNA, RNA, and T cell receptor (TCR) sequencing on 29 cutaneous γδ lymphomas. We find that PCGDTLs are not uniformly derived from Vδ2 cells. Instead, the cell-of-origin depends on the tissue compartment from which the lymphomas are derived. Lymphomas arising from the outer layer of skin are derived from Vδ1 cells, the predominant γδ cell in the epidermis and dermis. In contrast, panniculitic lymphomas arise from Vδ2 cells, the predominant γδ T cell in the fat. We also show that TCR chain usage is non-random, suggesting common antigens for Vδ1 and Vδ2 lymphomas respectively. In addition, Vδ1 and Vδ2 PCGDTLs harbor similar genomic landscapes with potentially targetable oncogenic mutations in the JAK/STAT, MAPK, MYC, and chromatin modification pathways. Collectively, these findings suggest a paradigm for classifying, staging, and treating these diseases.


Assuntos
Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/patologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Sequência de Aminoácidos , Antígenos CD1d/metabolismo , Montagem e Desmontagem da Cromatina , Epitopos/imunologia , Genoma Humano , Células HEK293 , Humanos , Linfonodos/patologia , Modelos Biológicos , Mutação/genética , Fenótipo , Análise de Componente Principal , Transdução de Sinais , Pele/patologia , Transcrição Gênica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA