Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 102: 415-424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36600142

RESUMO

The ageing process is highly complex involving multiple processes operating at different biological levels. Systems Biology presents an approach using integrative computational and laboratory study that allows us to address such complexity. The approach relies on the computational analysis of knowledge and data to generate predictive models that may be validated with further laboratory experimentation. Our understanding of ageing is such that translational opportunities are within reach and systems biology offers a means to ensure that optimal decisions are made. We present an overview of the methods employed from bioinformatics and computational modelling and describe some of the insights into ageing that have been gained.


Assuntos
Biologia Computacional , Biologia de Sistemas , Biologia de Sistemas/métodos , Biologia Computacional/métodos , Simulação por Computador , Modelos Biológicos
2.
Front Aging Neurosci ; 15: 1290681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161589

RESUMO

Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5'-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease.

3.
Neuro Oncol ; 24(1): 153-165, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34272868

RESUMO

BACKGROUND: Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease. METHODS: We undertook large-scale integrated characterization of the molecular features of rMB-molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54). RESULTS: Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse. CONCLUSIONS: rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/genética , Variações do Número de Cópias de DNA , Humanos , Meduloblastoma/genética , Mutação , Recidiva Local de Neoplasia/genética
4.
Sci Rep ; 7(1): 14443, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089527

RESUMO

The development of tendinopathy is influenced by a variety of factors including age, gender, sex hormones and diabetes status. Cross platform comparative analysis of transcriptomic data elucidated the connections between these entities in the context of ageing. Tissue-engineered tendons differentiated from bone marrow derived mesenchymal stem cells from young (20-24 years) and old (54-70 years) donors were assayed using ribonucleic acid sequencing (RNA-seq). Extension of the experiment to microarray and RNA-seq data from tendon identified gender specific gene expression changes highlighting disparity with existing literature and published pathways. Separation of RNA-seq data by sex revealed underlying negative binomial distributions which increased statistical power. Sex specific de novo transcriptome assemblies generated fewer larger transcripts that contained miRNAs, lincRNAs and snoRNAs. The results identify that in old males decreased expression of CRABP2 leads to cell proliferation, whereas in old females it leads to cellular senescence. In conjunction with existing literature the results explain gender disparity in the development and types of degenerative diseases as well as highlighting a wide range of considerations for the analysis of transcriptomic data. Wider implications are that degenerative diseases may need to be treated differently in males and females because alternative mechanisms may be involved.


Assuntos
Envelhecimento/genética , Receptores do Ácido Retinoico/fisiologia , Tendões/fisiologia , Idoso , Diferenciação Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Receptores do Ácido Retinoico/genética , Análise de Sequência de RNA/métodos , Caracteres Sexuais , Tendões/metabolismo , Transcriptoma/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA