Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2305667120, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812718

RESUMO

Deformation of all materials necessitates the collective propagation of various microscopic defects. On Earth, fracturing gives way to crystal-plastic deformation with increasing depth resulting in a "brittle-to-ductile" transition (BDT) region that is key for estimating the integrated strength of tectonic plates, constraining the earthquake cycle, and utilizing deep geothermal resources. Here, we show that the crossing of a BDT in marble during deformation experiments in the laboratory is accompanied by systematic increase in the frequency of acoustic emissions suggesting a profound change in the mean size and propagation velocity of the active defects. We further identify dominant classes of emitted waveforms using unsupervised learning methods and show that their relative activity systematically changes as the rocks cross the brittle-ductile transition. As pressure increases, long-period signals are suppressed and short-period signals become dominant. At higher pressures, signals frequently come in avalanche-like patterns. We propose that these classes of waveforms correlate with individual dominant defect types. Complex mixed-mode events indicate that interactions between the defects are common over the whole pressure range, in agreement with postmortem microstructural observations. Our measurements provide unique, real-time data of microscale dynamics over a broad range of pressures (10 to 200 MPa) and can inform micromechanical models for semi-brittle deformation.

2.
J Acoust Soc Am ; 150(4): 2503, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717502

RESUMO

We present a method for calibrating piezoelectric sensors using a laser Doppler vibrometer. Our method uses an average of Fourier transform terms of the recorded signal from the piezoelectric sensor, which is compared with the laser probe measurement in the overlapping frequency range. We use our method to calibrate the response of miniature needle sensors employed in acoustic emission testing to several different excitation sources of stress waves in the frequency range of 20-300 kHz. We demonstrate that the output of the piezoelectric sensors can be accurately scaled with particle velocity.

3.
Nat Commun ; 12(1): 6779, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811363

RESUMO

Fault zones accommodate relative motion between tectonic blocks and control earthquake nucleation. Nanocrystalline fault rocks are ubiquitous in "principal slip zones" indicating that these materials are determining fault stability. However, the rheology of nanocrystalline fault rocks remains poorly constrained. Here, we show that such fault rocks are an order of magnitude weaker than their microcrystalline counterparts when deformed at identical experimental conditions. Weakening of the fault rocks is hence intrinsic, it occurs once nanocrystalline layers form. However, it is difficult to produce "rate weakening" behavior due to the low measured stress exponent, n, of 1.3 ± 0.4 and the low activation energy, Q, of 16,000 ± 14,000 J/mol implying that the material will be strongly "rate strengthening" with a weak temperature sensitivity. Failure of the fault zone nevertheless occurs once these weak layers coalesce in a kinematically favored network. This type of instability is distinct from the frictional instability used to describe crustal earthquakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA