Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 5832-5868, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665517

RESUMO

Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.

2.
Org Lett ; 24(29): 5468-5473, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35856291

RESUMO

The 1,1a,2,7b-tetrahydrocyclopropa[c]chromene, arising from fusion of chromane and cyclopropane rings is the core of medicinally relevant compounds. Engaging sulfoxonium ylides in enantioselective aminocatalytic reactions for the first time, a convenient entry to this scaffold is presented. Several ring-fused derivatives were obtained in moderate-to-good yields and enantioselectivities and with perfect diastereoselectivity at the cyclopropane, using an α,α-diphenylprolinol aminocatalyst. The versatility of the hemiacetal moiety in the products was leveraged to effect various synthetic manipulations.


Assuntos
Cromanos , Ciclopropanos , Benzopiranos , Ciclopropanos/química , Estereoisomerismo
3.
J Photochem Photobiol B ; 206: 111852, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32199235

RESUMO

Photodynamic therapy (PDT) is considered a very promising therapeutic modality for antimicrobial therapy. Although several studies have demonstrated that Gram-positive bacteria are very sensitive to PDT, Gram-negative bacteria are more resistant to photodynamic action. This difference is due to a different cell wall structure. Gram-negative bacteria have an outer cell membrane containing lipopolysaccharides (LPS) that hinder the binding of photosensitizer molecules, protecting the bacterial cells from chemical attacks. Combination of the lipopolysaccharides-binding activity of Concanavalin A (ConA) with the photodynamic properties of Rose Bengal (RB) holds the potential of an innovative protein platform for targeted photodynamic therapy against Gram-negative bacteria. A ConA-RB bioconjugate was synthesized and characterized. Approximately 2.4 RB molecules were conjugated per ConA monomer. The conjugation of RB to ConA determines a decrease of the singlet oxygen generation and an increase of superoxide and peroxide production. The photokilling efficacy of the ConA-RB bioconjugate was demonstrated in a planktonic culture of E. coli. Irradiation with white light from a LED lamp produced a dose-dependent photokilling of bacteria. ConA-RB conjugates exhibited a consistent improvement over RB (up to 117-fold). The improved uptake of the photosensitizer explains the enhanced PDT effect accompanying increased membrane damages induced by the ConA-RB conjugate. The approach can be readily generalized (i) using different photo/sonosensitizers, (ii) to target other pathogens characterized by cell membranes containing lipopolysaccharides (LPS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA