Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(2): e22155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044708

RESUMO

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor (LIF) is robustly upregulated and can stimulate Mmp14 expression in macrophages. Functional experiments confirmed that modulation of this muscle cell-macrophage axis facilitated Type I collagen turnover. Finally, changes in LIF expression were significantly correlated with MMP14 expression in humans following 14 weeks of PRT. Our experiments reveal a mechanism whereby muscle fibers influence macrophage behavior to promote ECM remodeling in response to mechanical loading.


Assuntos
Matriz Extracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Humanos , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Treinamento Resistido/métodos
2.
FASEB J ; 35(6): e21644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34033143

RESUMO

How regular physical activity is able to improve health remains poorly understood. The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing muscle-specific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrß3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Exercício Físico , Vesículas Extracelulares/fisiologia , Lipólise , MicroRNAs/genética , Músculo Esquelético/fisiopatologia , Estresse Mecânico , Fator de Transcrição AP-2/metabolismo , Adolescente , Adulto , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Transcrição AP-2/genética , Adulto Jovem
3.
Physiol Genomics ; 53(5): 206-221, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870722

RESUMO

The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.


Assuntos
Redes Reguladoras de Genes , Treinamento Resistido , Aumento do Músculo Esquelético/genética , Absorciometria de Fóton , Idoso , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia
4.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G153-G165, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175569

RESUMO

Bariatric surgery is the most effective treatment for obesity and its comorbidities. However, our understanding of the molecular mechanisms behind its beneficial effects is limited. Extracellular vesicles (EVs) comprise an important mode of intercellular communication. They carry nucleic acids, hormones, and signaling molecules and regulate multiple processes. Our aim was to test the role of EVs in the effects of vertical sleeve gastrectomy (VSG) using a mouse model. Small intestinal EVs were obtained from the mice that underwent VSG or control surgery and were on chow or high-fat diet or diet-restricted, and then they were subjected to the proteomic analysis. Enteroid and bacterial cultures were treated with EVs to evaluate their survival effect. A mouse cohort received intraduodenal administration of EVs from VSG or Sham mice for 10 days. Body weight, glucose metabolism, and intestinal morphology were evaluated. EVs were enriched in the intestinal lumen and mucus of VSG compared with Sham mice. Protein composition of VSG and Sham-derived EVs was highly distinct. When introduced into culture, VSG EVs decreased survival of intestinal enteroids and, conversely, promoted proliferation of bacteria. Mice administered with EVs obtained from VSG and Sham groups did not show differences in body weight, food intake, or glucose metabolism. Intestinal morphology was altered, as VSG EVs caused reduction of ileal villi length and decreased epithelial proliferation in the jejunum and ileum. VSG causes remodeling of intestinal EVs, which results in unique protein composition. VSG-derived EVs exhibit cytotoxic effects on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.NEW & NOTEWORTHY This is the first study that investigates the impact of bariatric surgery on protein composition of intestinal extracellular vesicles. Extracellular vesicle composition is greatly altered after vertical sleeve gastrectomy and may potentially modulate various signaling pathways. In our study, extracellular vesicles from vertical sleeve gastrectomy-treated mice promote bacterial proliferation but exhibit cytotoxic effect on epithelial cells and reduce proliferation of intestinal progenitor cells in mice.


Assuntos
Vesículas Extracelulares/fisiologia , Gastrectomia/métodos , Mucosa Intestinal/fisiologia , Animais , Cirurgia Bariátrica , Glicemia , Proliferação de Células , Dieta Hiperlipídica , Células Epiteliais/fisiologia , Comportamento Alimentar , Intolerância à Glucose , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Transdução de Sinais , Redução de Peso
5.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643097

RESUMO

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Assuntos
Linhagem da Célula , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , MicroRNAs/genética , Transcriptoma , Animais , Biomarcadores/metabolismo , Separação Celular , Células Cultivadas , Biologia Computacional , Cães , Feminino , Citometria de Fluxo , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Organoides , RNA-Seq , Análise de Célula Única
6.
FASEB J ; 34(5): 7018-7035, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246795

RESUMO

Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated ß-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.


Assuntos
Envelhecimento/metabolismo , Histonas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Senescência Celular , Dano ao DNA , Reparo do DNA/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Obesidade/patologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Adulto Jovem
7.
Am J Physiol Cell Physiol ; 317(4): C719-C724, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314585

RESUMO

It is postulated that testosterone-induced skeletal muscle hypertrophy is driven by myonuclear accretion as the result of satellite cell fusion. To directly test this hypothesis, we utilized the Pax7-DTA mouse model to deplete satellite cells in skeletal muscle followed by testosterone administration. Pax7-DTA mice (6 mo of age) were treated for 5 days with either vehicle [satellite cell replete (SC+)] or tamoxifen [satellite cell depleted (SC-)]. Following a washout period, a testosterone propionate or sham pellet was implanted for 21 days. Testosterone administration caused a significant increase in muscle fiber cross-sectional area in SC+ and SC- mice in both oxidative (soleus) and glycolytic (plantaris and extensor digitorum longus) muscles. In SC+ mice treated with testosterone, there was a significant increase in both satellite cell abundance and myonuclei that was completely absent in testosterone-treated SC- mice. These findings provide direct evidence that testosterone-induced muscle fiber hypertrophy does not require an increase in satellite cell abundance or myonuclear accretion.Listen to a podcast about this Rapid Report with senior author E. E. Dupont-Versteegden (https://ajpcell.podbean.com/e/podcast-on-paper-that-shows-testosterone-induced-skeletal-muscle-hypertrophy-does-not-need-muscle-stem-cells/).


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Testosterona/farmacologia , Animais , Modelos Animais de Doenças , Hipertrofia/induzido quimicamente , Camundongos Transgênicos , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/fisiologia
8.
J Sport Rehabil ; 28(2): 126-132, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035666

RESUMO

CONTEXT: Professional football linemen are at risk for sleep-disordered breathing (SDB) compared with other types of athletes. It is currently unknown whether college football linemen display a similar risk profile. OBJECTIVE: (1) To determine for the first time whether college football linemen show risk for SDB and (2) test the hypothesis that SDB risk is higher in college football linemen compared with an athletic comparison group. DESIGN: Descriptive laboratory study. SETTING: The Health Risk Assessment Laboratory. PARTICIPANTS: Male football linemen (n = 21) and track (n = 19) Division I athletes between the ages of 18 and 22 years. INTERVENTIONS: Participants completed the Multivariable Apnea Prediction Index and Epworth Sleepiness Scale surveys, validated measures of symptoms of sleep apnea and daytime sleepiness, respectively. Neck and waist circumferences, blood pressure, Modified Mallampati Index (MMPI), and tonsil size were determined, followed by body composition assessment using dual-energy X-ray absorptiometry. MAIN OUTCOME MEASURES: Scores from surveys, anthropometric data, MMPI, and body composition. RESULTS: Survey data demonstrated a deficiency in sleep quality and efficiency, coinciding with increased self-reported symptoms of apnea (Multivariable Apnea Prediction Index = 0.78) in college linemen relative to track athletes. Neck circumference (44.36 cm), waist circumference (107.07 cm), body mass index (35.87 kg/m2), and percent body fat (29.20%), all of which exceeded the clinical predictors of risk for obstructive sleep apnea, were significantly greater in linemen compared with track athletes. Multivariable Apnea Prediction variables were significantly correlated with MMPI, neck circumference, percent body fat, body mass index, and systolic blood pressure (r ≥ .31, P < .05), indicating that college football linemen are at increased risk for SDB. CONCLUSIONS: Risk factors for SDB recognized in professional football linemen are also present at the college level. Screening may minimize present or future risk for SDB, as well as the downstream risk of SDB-associated metabolic and cardiovascular disease.


Assuntos
Atletas , Futebol Americano/fisiologia , Medição de Risco , Síndromes da Apneia do Sono/diagnóstico , Absorciometria de Fóton , Adolescente , Antropometria , Pressão Sanguínea , Composição Corporal , Índice de Massa Corporal , Humanos , Masculino , Universidades , Adulto Jovem
9.
J Biol Chem ; 292(7): 2586-2600, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28053090

RESUMO

Gut microbiota play an important role in regulating the development of the host immune system, metabolic rate, and at times, disease pathogenesis. The factors and mechanisms that mediate interactions between microbiota and the intestinal epithelium are not fully understood. We provide novel evidence that microbiota may control intestinal epithelial stem cell (IESC) proliferation in part through microRNAs (miRNAs). We demonstrate that miRNA profiles differ dramatically across functionally distinct cell types of the mouse jejunal intestinal epithelium and that miRNAs respond to microbiota in a highly cell type-specific manner. Importantly, we also show that miRNAs in IESCs are more prominently regulated by microbiota compared with miRNAs in any other intestinal epithelial cell subtype. We identify miR-375 as one miRNA that is significantly suppressed by the presence of microbiota in IESCs. Using a novel method to knockdown gene and miRNA expression ex vivo enteroids, we demonstrate that we can knock down gene expression in Lgr5+ IESCs. Furthermore, when we knock down miR-375 in IESCs, we observe significantly increased proliferative capacity. Understanding the mechanisms by which microbiota regulate miRNA expression in IESCs and other intestinal epithelial cell subtypes will elucidate a critical molecular network that controls intestinal homeostasis and, given the heightened interest in miRNA-based therapies, may offer novel therapeutic strategies in the treatment of gastrointestinal diseases associated with altered IESC function.


Assuntos
Mucosa Intestinal/metabolismo , Células-Tronco/microbiologia , Transcriptoma , Animais , Feminino , Vida Livre de Germes , Proteínas de Fluorescência Verde/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Células-Tronco/citologia
10.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R468-R477, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187383

RESUMO

Protein kinase C-θ (PKC-θ) is a lipid-sensitive molecule associated with lipid-induced insulin resistance in skeletal muscle. Rodent models have not cohesively supported that PKC-θ impairs insulin responsiveness in skeletal muscle. The purpose of this study was to generate mice that lack PKC-θ in skeletal muscle and determine how lipid accumulation and insulin responsiveness are affected in that tissue. Mice lacking PKC-θ in skeletal muscle (SkMPKCθKO) and controls (SkMPKCθWT) were placed on a regular diet (RD) or high-fat diet (HFD) for 15 wk, followed by determination of food intake, fasting glucose levels, lipid accumulation, and insulin responsiveness. There were no differences between SkMPKCθWT and SkMPKCθKO mice on a RD. SkMPKCθKO mice on a HFD gained less weight from 10 through 15 wk of dietary intervention ( P < 0.05). This was likely due to less caloric consumption ( P = 0.0183) and fewer calories from fat ( P < 0.001) compared with SkMPKCθWT mice on a HFD. Intramyocellular lipid accumulation ( P < 0.0001), fatty acid binding protein 4, and TNF-α mRNA levels ( P < 0.05) were markedly reduced in SkMPKCθKO compared with SkMPKCθWT mice on a HFD. As a result, fasting hyperglycemia was mitigated and insulin responsiveness, as indicated by Akt phosphorylation, was maintained in SkMPKCθKO on a HFD. Liver lipid accumulation was not affected by genotype, suggesting the deletion of PKC-θ from skeletal muscle has a tissue-specific effect. PKC-θ is a regulator of lipid-induced insulin resistance in skeletal muscle. However, the effects of this mutation may be tissue specific. Further work is warranted to comprehensively evaluated whole body metabolic responses in this model.


Assuntos
Resistência à Insulina , Insulina/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/enzimologia , Proteína Quinase C-theta/deficiência , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosforilação , Proteína Quinase C-theta/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Aumento de Peso
11.
J Biol Chem ; 291(35): 18397-409, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27365390

RESUMO

High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe(-/-) mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Microssomos Hepáticos/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Colesterol/sangue , Hipercolesterolemia/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética
12.
J Biol Chem ; 291(31): 15975-84, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27261459

RESUMO

Proliferation and differentiation of intestinal epithelial cells (IECs) occur in part through precise regulation of key transcription factors, such as SOX9. MicroRNAs (miRNAs) have emerged as prominent fine-tuners of transcription factor expression and activity. We hypothesized that miRNAs, in part through the regulation of SOX9, may mediate IEC homeostasis. Bioinformatic analyses of the SOX9 3'-UTR revealed highly conserved target sites for nine different miRNAs. Of these, only the miR-30 family members were both robustly and variably expressed across functionally distinct cell types of the murine jejunal epithelium. Inhibition of miR-30 using complementary locked nucleic acids (LNA30bcd) in both human IECs and human colorectal adenocarcinoma-derived Caco-2 cells resulted in significant up-regulation of SOX9 mRNA but, interestingly, significant down-regulation of SOX9 protein. To gain mechanistic insight into this non-intuitive finding, we performed RNA sequencing on LNA30bcd-treated human IECs and found 2440 significantly increased genes and 2651 significantly decreased genes across three time points. The up-regulated genes are highly enriched for both predicted miR-30 targets, as well as genes in the ubiquitin-proteasome pathway. Chemical suppression of the proteasome rescued the effect of LNA30bcd on SOX9 protein levels, indicating that the regulation of SOX9 protein by miR-30 is largely indirect through the proteasome pathway. Inhibition of the miR-30 family led to significantly reduced IEC proliferation and a dramatic increase in markers of enterocyte differentiation. This in-depth analysis of a complex miRNA regulatory program in intestinal epithelial cell models provides novel evidence that the miR-30 family likely plays an important role in IEC homeostasis.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Enterócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Fatores de Transcrição SOX9/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células CACO-2 , Enterócitos/citologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Ubiquitina-Proteína Ligases/genética
13.
Int J Mol Sci ; 17(2): 232, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26875982

RESUMO

Unlike the glucocorticoid receptor α (GRα), GR ß (GRß) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRß causes glucocorticoid resistance, targeting GRß may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRß affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRß in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRß overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRß overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRß had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRß may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRß levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.


Assuntos
Metabolismo Energético/genética , Expressão Gênica , Desenvolvimento Muscular/genética , Receptores de Glucocorticoides/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Dexametasona/farmacologia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Mol Ther Nucleic Acids ; 34: 102081, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38111915

RESUMO

MicroRNAs (miRNAs) control the expression of diverse subsets of target mRNAs, and studies have found miRNA dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increases with aging, and is altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Here, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated virus (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. The integration of RNA sequencing and miRNA-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.

15.
Function (Oxf) ; 3(3): zqac015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434632

RESUMO

Aging is accompanied by reduced remodeling of skeletal muscle extracellular matrix (ECM), which is exacerbated during recovery following periods of disuse atrophy. Mechanotherapy has been shown to promote ECM remodeling through immunomodulation in adult muscle recovery, but not during the aged recovery from disuse. In order to determine if mechanotherapy promotes ECM remodeling in aged muscle, we performed single cell RNA sequencing (scRNA-seq) of all mononucleated cells in adult and aged rat gastrocnemius muscle recovering from disuse, with (REM) and without mechanotherapy (RE). We show that fibroadipogenic progenitor cells (FAPs) in aged RE muscle are highly enriched in chemotaxis genes (Csf1), but absent in ECM remodeling genes compared to adult RE muscle (Col1a1). Receptor-ligand (RL) network analysis of all mononucleated cell populations in aged RE muscle identified chemotaxis-enriched gene expression in numerous stromal cell populations (FAPs, endothelial cells, pericytes), despite reduced enrichment of genes related to phagocytic activity in myeloid cell populations (macrophages, monocytes, antigen presenting cells). Following mechanotherapy, aged REM mononuclear cell gene expression resembled adult RE muscle as evidenced by RL network analyses and KEGG pathway activity scoring. To validate our transcriptional findings, ECM turnover was measured in an independent cohort of animals using in vivo isotope tracing of intramuscular collagen and histological scoring of the ECM, which confirmed mechanotherapy-mediated ECM remodeling in aged RE muscle. Our results highlight age-related cellular mechanisms underpinning the impairment to complete recovery from disuse, and also promote mechanotherapy as an intervention to enhance ECM turnover in aged muscle recovering from disuse.


Assuntos
Células Endoteliais , Transtornos Musculares Atróficos , Ratos , Animais , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Macrófagos , Matriz Extracelular
16.
J Appl Physiol (1985) ; 132(6): 1432-1447, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482328

RESUMO

In older individuals, hypertrophy from progressive resistance training (PRT) is compromised in approximately one-third of participants in exercise trials. The objective of this study was to establish novel relationships between baseline muscle features and/or their PRT-induced change in vastus lateralis muscle biopsies with hypertrophy outcomes. Multiple linear regression analyses adjusted for sex were performed on phenotypic data from older adults (n = 48 participants, 70.8 ± 4.5 yr) completing 14 wk of PRT. Results show that baseline muscle size associates with growth regardless of hypertrophy outcome measure [fiber cross-sectional area (fCSA), ß = -0.76, Adj. P < 0.01; thigh muscle area by computed tomography (CT), ß = -0.75, Adj. P < 0.01; dual-energy X-ray absorptiometry (DXA) thigh lean mass, ß = -0.47, Adj. P < 0.05]. Furthermore, loosely packed collagen organization (CO, ß = -0.44, Adj. P < 0.05) and abundance of CD11b+/CD206- immune cells (ß = -0.36, Adj. P = 0.10) were negatively associated with whole muscle hypertrophy, with a significant sex interaction on the latter. In addition, a composite hypertrophy score generated using all three measures reinforces significant fiber level findings that changes in myonuclei (MN) (ß = 0.67, Adj. P < 0.01), changes in immune cells (ß = 0.48, Adj. P < 0.05; both CD11b+/CD206+and CD11b+/CD206- cells), and capillary density (ß = 0.56, Adj. P < 0.01) are significantly associated with growth. Exploratory single-cell RNA-sequencing of CD11b+ cells in muscle in response to resistance exercise showed that macrophages have a mixed phenotype. Collagen associations with macrophages may be an important aspect in muscle response heterogeneity. Detailed histological phenotyping of muscle combined with multiple measures of growth response to resistance training in older persons identify potential new mechanisms underlying response heterogeneity and possible sex differences.NEW & NOTEWORTHY Extensive analyses of muscle features associated with muscle size and resistance training response in older persons, including sex differences, and evaluation of multiple measures of hypertrophy are discussed. Collagen organization and CD11b-expressing immune cells offer potential new targets to augment growth response in older individuals. A hypertrophy composite score reveals that changes in immune cells, myonuclei, and capillary density are critically important for overall muscle growth while sc-RNAseq reveals evidence for macrophage heterogeneity.


Assuntos
Treinamento Resistido , Idoso , Idoso de 80 Anos ou mais , Colágeno , Feminino , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia
17.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503251

RESUMO

Vertical sleeve gastrectomy (VSG) results in an increase in the number of hormone-secreting enteroendocrine cells (EECs) in the intestinal epithelium; however, the mechanism remains unclear. Notably, the beneficial effects of VSG are lost in a mouse model lacking the nuclear bile acid receptor farnesoid X receptor (FXR). FXR is a nuclear transcription factor that has been shown to regulate intestinal stem cell (ISC) function in cancer models. Therefore, we hypothesized that the VSG-induced increase in EECs is due to changes in intestinal differentiation driven by an increase in bile acid signaling through FXR. To test this, we performed VSG in mice that express EGFP in ISC/progenitor cells and performed RNA-Seq on GFP-positive cells sorted from the intestinal epithelia. We also assessed changes in EEC number (marked by glucagon-like peptide-1, GLP-1) in mouse intestinal organoids following treatment with bile acids, an FXR agonist, and an FXR antagonist. RNA-Seq of ISCs revealed that bile acid receptors are expressed in ISCs and that VSG explicitly alters expression of several genes that regulate EEC differentiation. Mouse intestinal organoids treated with bile acids and 2 different FXR agonists increased GLP-1-positive cell numbers, and administration of an FXR antagonist blocked these effects. Taken together, these data indicate that VSG drives ISC fate toward EEC differentiation through bile acid signaling.


Assuntos
Ácidos e Sais Biliares , Gastrectomia , Animais , Diferenciação Celular , Gastrectomia/métodos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos , Células-Tronco/metabolismo
18.
iScience ; 24(8): 102838, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34368654

RESUMO

Skeletal muscle is composed of post-mitotic myofibers that form a syncytium containing hundreds of myonuclei. Using a progressive exercise training model in the mouse and single nucleus RNA-sequencing (snRNA-seq) for high-resolution characterization of myonuclear transcription, we show myonuclear functional specialization in muscle. After 4 weeks of exercise training, snRNA-seq reveals that resident muscle stem cells, or satellite cells, are activated with acute exercise but demonstrate limited lineage progression while contributing to muscle adaptation. In the absence of satellite cells, a portion of nuclei demonstrates divergent transcriptional dynamics associated with mixed-fate identities compared with satellite cell replete muscles. These data provide a compendium of information about how satellite cells influence myonuclear transcription in response to exercise.

19.
Geroscience ; 43(2): 629-644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462708

RESUMO

Preserving muscle mass and strength is critical for long-term health and longevity. Age-related muscle lipid accumulation has been shown to be detrimental to muscle health. In healthy older individuals, we sought to determine whether muscle lipid content, determined from computed tomography, is associated with self-reported physical function, laboratory-measured performance, and the response to progressive resistance training (PRT), and how metformin may alter these responses (N = 46 placebo, 48 metformin). Using multiple linear regression models adjusted for confounders in a large cohort, we show that intermuscular adipose tissue (IMAT) was not associated with baseline function or response to PRT, contrary to previous reports. On the other hand, thigh muscle density (TMD), as an indicator of intra- and extramyocellular lipid (IMCL and EMCL), remained strongly and independently positively associated with physical function and performance following adjustment. Baseline TMD was inversely associated with gains in strength, independent of muscle mass. Percent change in TMD was positively associated with improved chair stand and increased type II fiber frequency but was not associated with muscle hypertrophy or overall strength gain following PRT. For the first time, we show that metformin use during PRT blunted density and strength gains by inhibiting fiber type switching primarily in those with low baseline TMD. These results indicate that participants with higher muscle lipid content derive the most performance benefit from PRT. Our results further indicate that muscle density may be as influential as muscle size for strength, physical function, and performance in healthy older adults. ClinicalTrials.gov , NCT02308228, Registered on 25 November 2014.


Assuntos
Metformina , Treinamento Resistido , Idoso , Humanos , Lipídeos , Metformina/uso terapêutico , Força Muscular , Músculo Esquelético
20.
Function (Oxf) ; 2(1): zqaa033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109314

RESUMO

Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content. We administered vehicle or tamoxifen to adult Pax7-DTA mice and subjected them to progressive weighted wheel running (PoWeR). We then performed immunohistochemical analysis and whole-muscle RNA-seq of vehicle (SC+) and tamoxifen-treated (SC-) mice. Further, we performed single myonuclear RNA-seq to provide detailed information on how satellite cell fusion affects myonuclear transcription. We show that while skeletal muscle can mount a robust hypertrophic response to PoWeR in the absence of satellite cells, growth, and adaptation are ultimately blunted. Transcriptional profiling reveals several gene networks key to muscle adaptation are altered in the absence of satellite cells.


Assuntos
Condicionamento Físico Animal , Células Satélites de Músculo Esquelético , Camundongos , Animais , Atividade Motora , Músculo Esquelético , Hipertrofia , Tamoxifeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA