Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 15(4): fov017, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25934176

RESUMO

The maintenance of ionic homeostasis is essential for cell viability, thus the activity of plasma membrane ion transporters must be tightly controlled. Previous studies in Saccharomyces cerevisiae revealed that the proper trafficking of several nutrient permeases requires the E3 ubiquitin ligase Rsp5 and, in many cases, the presence of specific adaptor proteins needed for Rsp5 substrate recognition. Among these adaptor proteins are nine members of the arrestin-related trafficking adaptor (ART) family. We studied the possible role of the ART family in the regulation of monovalent cation transporters. We show here that the salt sensitivity phenotype of the rim8/art9 mutant is due to severe defects in Ena1 protein accumulation, which is not attributable to transcriptional defects. Many components of the Rim pathway are required for correct Ena1 accumulation, but not for the accumulation of other nutrient permeases. Moreover, we observe that strains lacking components of the endosomal sorting complexes required for transport (ESCRT) pathway previously described to play a role in Rim complex formation present similar defects in Ena1 accumulation. Our results show that, in response to salt stress, a functional Rim complex via specific ESCRT interactions is required for the proper accumulation of the Ena1 protein, but not induction of the ENA1 gene.


Assuntos
Regulação Fúngica da Expressão Gênica , Pressão Osmótica , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Sais/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Genes Cells ; 16(2): 152-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21143561

RESUMO

We have investigated the effects of alterations in potassium homeostasis on cell cycle progression and genome stability in Saccharomyces cerevisiae. Yeast strains lacking the PPZ1 and PPZ2 phosphatase genes, which aberrantly accumulate potassium, are sensitive to agents causing replicative stress or DNA damage and present a cell cycle delay in the G(1) /S phase. A synthetic slow growth phenotype was identified in a subset of DNA repair mutants upon inhibition of Ppz activity. Moreover, we observe that this slow growth phenotype observed in cdc7(ts) mutants with reduced Ppz activity is reverted by disrupting the TRK1 potassium transporter gene. As over-expression of a mammalian potassium transporter leads to similar phenotypes, we conclude that these defects can be attributed to potassium accumulation. As we reported previously, internal potassium accumulation activates the Slt2 MAP kinase pathway. We show that the removal of SLT2 in ppz1 ppz2 mutants ameliorates sensitivity to agents causing replication stress and DNA damage, whereas over-activation of the pathway leads to similar cell cycle-related defects. Taken together, these results are consistent with inappropriate potassium accumulation reducing DNA replication efficiency, negatively influencing DNA integrity and leading to the requirement of mismatch repair, the MRX complex, or homologous recombination pathways for normal growth.


Assuntos
Dano ao DNA , Fosfoproteínas Fosfatases/genética , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular/genética , Reparo de Erro de Pareamento de DNA , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Fase G1/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Fase S/genética
3.
Protein Sci ; 14(8): 2080-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15987895

RESUMO

It was recently described that the alpha5 and the alpha13 helices of human pancreatic glucokinase play a major role in the allosteric regulation of the enzyme. In order to understand the structural importance of these helices, we have performed site-directed mutagenesis to generate glucokinase derivatives with altered residues. We have analyzed the kinetic parameters of these mutated forms and compared them with wild-type and previously defined activating mutations in these helices (A456V and Y214C). We found two new activating mutations, A460R and Y215A, which increase the affinity of the enzyme for glucose. Our results suggest that substitutions in the alpha5 or the alpha13 helices that favor the closed, active conformation of the enzyme, either by improving the interaction with surrounding residues or by improving the flexibility of the region defined by these two helices, enhance the affinity of the enzyme for glucose, and therefore its performance as a glucose phosphorylating enzyme.


Assuntos
Glucoquinase/química , Sequência de Aminoácidos , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
4.
Biochemistry ; 46(31): 8909-19, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17630778

RESUMO

Protein Ser/Thr phosphatase-1 (PP1) associates with a host of proteins to form substrate-specific holoenzymes. Sds22 and Inhibitor-3 (I3) are two independently described ancient interactors of PP1. We show here by various approaches that Sds22 and I3 form a heterotrimeric complex with PP1, both in cell lysates and after purification. The stability of the complex depended on functional PP1 interaction sites in Sds22 and I3, indicating that PP1 is sandwiched between Sds22 and I3. Intriguingly, I3 could not be replaced in this complex by another PP1 interactor with the same PP1 binding motif. In vitro, Sds22 and I3 were potent inhibitors of PP1, but with only some substrates. The inhibition by Sds22 could be reproduced with synthetic Sds22 fragments comprising leucine-rich repeats (LRR) 2 and 5. Sds22 and LRR5 also slowly converted PP1 into a conformation that was inactive with all tested substrates. Cell lysates that were prepared under conditions that prevented the Sds22-induced inactivation of PP1 contained a catalytically inactive complex of Sds22, PP1, and I3, indicating that this complex exists in vivo. Therefore, our studies show that a pool of PP1 is complexly controlled by both Sds22 and I3.


Assuntos
Inibidores Enzimáticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Células COS , Catálise , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Conformação Proteica , Proteína Fosfatase 1 , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Tripsina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases
5.
J Biol Chem ; 282(5): 3282-92, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17142459

RESUMO

We have recently characterized Ypi1 as an inhibitory subunit of yeast Glc7 PP1 protein phosphatase. In this work we demonstrate that Ypi1 forms a complex with Glc7 and Sds22, another Glc7 regulatory subunit that targets the phosphatase to substrates involved in cell cycle control. Interestingly, the combination of equimolar amounts of Ypi1 and Sds22 leads to an almost full inhibition of Glc7 activity. Because YPI1 is an essential gene, we have constructed conditional mutants that demonstrate that depletion of Ypi1 leads to alteration of nuclear localization of Glc7 and cell growth arrest in mid-mitosis with aberrant mitotic spindle. These phenotypes mimic those produced upon inactivation of Sds22. The fact that progressive depletion of either Ypi1 or Sds22 resulted in similar physiological phenotypes and that both proteins inhibit the phosphatase activity of Glc7 strongly suggest a common role of these two proteins in regulating Glc7 nuclear localization and function.


Assuntos
Núcleo Celular/enzimologia , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Primers do DNA , Inibidores Enzimáticos , Escherichia coli/enzimologia , Escherichia coli/genética , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular , Mitose , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Plasmídeos , Proteína Fosfatase 1 , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA