Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746085

RESUMO

Objective: The purpose of this study was to investigate the factors associated with outcomes of attaching artificial tendons to bone using suture anchors for replacement of biological tendons in rabbits. Study Design: Metal suture anchors with braided composite sutures of varying sizes (USP #1, #2, or #5) were used to secure artificial tendons replacing both the Achilles and tibialis cranialis tendons in 12 New Zealand White rabbits. Artificial tendons were implanted either at the time of (immediate replacement, n=8), or four weeks after (delayed replacement, n=4) resection of the biological tendon. Hindlimb radiographs of the rabbits were obtained immediately after surgery and approximately every other week until the study endpoint (16 weeks post-surgery). Results: All suture anchors used for the tibialis cranialis artificial tendons remained secure and did not fail during the study. The suture linkage between the Achilles artificial tendon and anchor failed in 9 of 12 rabbits. In all cases, the mode of failure was suture breakage distant from the knot. Based on radiographic analysis, the mean estimated failure timepoint was 5.3±2.3 weeks post-surgery, with a range of 2-10 weeks. Analysis of variance (ANOVA) tests revealed no significant effect of tendon implantation timing or suture size on either the timing or frequency of suture anchor failure. Conclusion: Based on the mode of failure, suture mechanical properties, and suture anchor design, we suspect that the cause of failure was wear of the suture against the edges of the eyelet in the suture anchor post, which reduced the suture strength below in vivo loads. Suture anchor designs differed for the tibialis cranialis and did not fail during the period of study. Future studies are needed to optimize suture anchor mechanical performance under different loading conditions and suture anchor design features.

2.
J Biomech ; 151: 111520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36944293

RESUMO

Artificial tendons may be valuable clinical devices for replacing damaged or missing biological tendons. In this preliminary study, we quantified the effect of polyester-suture-based artificial tendons on movement biomechanics. New Zealand White rabbits underwent surgical replacement of either the Achilles (n = 2) or tibialis cranialis (TC, n = 2) biological tendons with artificial tendons. Once pre-surgery and weekly from 2 to 6 weeks post-surgery, we quantified hindlimb kinematics and ground contact pressures during the stance phase of hopping gait. Post-surgical movement biomechanics were either consistent or improved over time in both groups. However, the Achilles group had greater overall biomechanical and muscle deficits than the TC group. In the TC group, at 6 weeks post-surgery, foot angles were about 10° greater than those in healthy controls during the first 30 % of stance. At 6 weeks post-surgery, the Achilles group exhibited lesser (i.e., more dorsiflexed) ankle angles (minimum angle = 31.5 ± 9.4°) and vertical ground reaction forces (37.4 ± 2.6 %BW) during stance than those in healthy controls (65.0 ± 11.2° and 50.2 ± 8.3 %BW, respectively). Future studies are needed to quantify long-term biomechanical function with artificial tendons, the effect of artificial tendons on muscle function and structure, and the effect of formal rehabilitation.


Assuntos
Tendão do Calcâneo , , Animais , Coelhos , Fenômenos Biomecânicos , Pé/fisiologia , Tornozelo , Marcha/fisiologia , Tendão do Calcâneo/fisiologia
3.
Bioengineering (Basel) ; 9(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36004873

RESUMO

Prosthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle-prosthesis attachment to restore more natural sensorimotor function to people with amputation. The objective of our study was to test, in a rabbit model, the feasibility of replacing the lost foot after hindlimb transtibial amputation by implanting a novel rigid foot-ankle endoprosthesis that is fully covered with skin. We first conducted a pilot, non-survival surgery in two rabbits to determine the maximum size of the skin flap that could be made from the biological foot-ankle. The skin flap size was used to determine the dimensions of the endoprosthesis foot segment. Rigid foot-ankle endoprosthesis prototypes were successfully implanted in three rabbits. The skin incisions healed over a period of approximately 1 month after surgery, with extensive fur regrowth by the pre-defined study endpoint of approximately 2 months post surgery. Upon gross inspection, the skin surrounding the endoprosthesis appeared normal, but a substantial subdermal fibrous capsule had formed around the endoprosthesis. Histology indicated that the structure and thickness of the skin layers (epidermis and dermis) were similar between the operated and non-operated limbs. A layer of subdermal connective tissue representing the fibrous capsule surrounded the endoprosthesis. In the operated limb of one rabbit, the subdermal connective tissue layer was approximately twice as thick as the skin on the medial (skin = 0.43 mm, subdermal = 0.84 mm), ventral (skin = 0.80 mm, subdermal = 1.47 mm), and lateral (skin = 0.76 mm, subdermal = 1.42 mm) aspects of the endoprosthesis. Our results successfully demonstrated the feasibility of implanting a fully skin-covered rigid foot-ankle endoprosthesis to replace the lost tibia-foot segment of the lower limb. Concerns include the fibrotic capsule which could limit the range of motion of jointed endoprostheses. Future studies include testing of endoprosthetics, as well as materials and pharmacologic agents that may suppress fibrous encapsulation.

4.
Sci Rep ; 12(1): 3208, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217701

RESUMO

The aim of this study was to create a surgical guide platform that maintains its integrity while the surgeon performs an intestinal anastomosis or another similar procedure, which then breaks apart and is eliminated from the body in a controlled manner. The device contains mixed polymeric structures that give it a controlled rate of disassembly that could meet the requirements of a specific surgical purpose. The intraluminal anastomotic guide was manufactured as a hollow cylinder composed of layers of porous polyurethane/PCL with polyvinylpyrrolidone as the binding agent similar to a "brick-mortar" architecture. This combination of polymeric structures is a promising manufacturing method from which a variety of tunable devices can be fabricated for specific medical procedures and site-specific indications. The guide was designed to rapidly disassemble within the intestinal lumen after use, reliably degrading while maintaining sufficient mechanical rigidity and stability to support manipulation during complex surgical procedures. The nature of the device's disassembly makes it suitable for use in hollow structures that discharge their contents, resulting in their elimination from the body. A swine model of intestinal anastomosis was utilized to validate the use and function of the device.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Intestinos , Anastomose Cirúrgica/métodos , Animais , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Intestinos/cirurgia , Polímeros , Porosidade , Suínos
5.
Front Surg ; 7: 587951, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263000

RESUMO

Various conditions in human and veterinary medicine require intestinal resection and anastomosis, and complications from these procedures are frequent. A rapidly collapsible anastomotic guide was developed for small intestinal end-to-end anastomosis and was investigated in order to assess its utility to improve the anastomotic process and to potentially reduce complication rates. A complex manufacturing method for building a polymeric device was established utilizing biocompatible and biodegradable polyvinylpyrrolidone and polyurethane. This combination of polymers would result in rapid collapse of the material. The guide was designed as a hollow cylinder composed of overlaying shingles that separate following exposure to moisture. An in vivo study was performed using commercial pigs, with each pig receiving one standard handsewn anastomosis and one guide-facilitated anastomosis. Pigs were sacrificed after 13 days, at which time burst pressure, maximum luminal diameter, and presence of adhesions were assessed. Burst pressures were not statistically different between treatment groups, but in vivo anastomoses performed with the guide withstood 10% greater luminal burst pressure and maintained 17% larger luminal diameter than those performed using the standard handsewn technique alone. Surgeons commented that the addition of a guide eased the performance of the anastomosis. Hence, a rapidly collapsible anastomotic guide may be beneficial to the performance of intestinal anastomosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA