Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Pediatr Otorhinolaryngol ; 184: 112059, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39213721

RESUMO

PURPOSE: To investigate the impact of 3D-printed temporal bone models with two different material transparencies on trainees' mastoidectomy performance. METHODS: Eleven ORL residents performed two anatomical mastoidectomies with posterior tympanotomy on two 3D-printed models with different transparency and VR simulation training. Participants where divided into two groups based on their experience. Within each group participants were randomized to start with the model printed in a completely opaque material or in a material featuring some degree of transparency. After drilling on 3D-printed models, the participants performed two similar mastoidectomies on human cadavers: one on the left side of one cadaver and one on the right side of another cadaver. After drilling 3D-printed models and cadavers, the final-product performances were evaluated by two experienced raters using the 26-item modified Welling Scale. Participants also evaluated the models using a questionnaire. RESULTS: Overall, the participants performed 25 % better on the 3D-printed models featuring transparency compared to the opaque models (18.6 points vs 14.9 points, mean difference = 3.7, 95 % CI 2.0-5.3, P < 0.001)). This difference in performance was independent of which material the participants had drilled first. In addition, the residents also subjectively rated the transparent model to be closer to cadaver dissection. The experienced group starting with the 3D-printed models scored 21.5 points (95 % CI 20.0-23.1), while the group starting with VR simulation training score 18.4 points (95 % CI 16.6-20.3). CONCLUSION: We propose that material used for 3D-printing temporal bone models should feature some degree of transparency, like natural bone, for trainees to learn and exploit key visual cues during drilling.

2.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37447613

RESUMO

Selective laser sintering (SLS) is a well-established technology that is used for additive manufacturing. Significant efforts have been made to improve SLS by optimizing the powder deposition, laser beam parameters, and temperature settings. The purpose is to ensure homogeneous sintering and prevent geometric and appearance inaccuracies in the manufactured objects. We evaluated the differences in the surface roughness and grain size of curved objects manufactured by using upcoming SLS technology that features two CO laser sources. Our analysis was carried out on polyamide 11 (PA11), which is a sustainable biobased polymer that has been gaining popularity due to its high-performance properties: its low melting point, high viscosity, and excellent mechanical properties. By using a Taguchi experimental design and analysis of variance (ANOVA), we examined the influence on the surface roughness and grain size of the build setup, the presence of thin walls, and the position of the sample on the powder bed. We found significant differences in some surface roughness and grain size measurements when these parameters were changed.

3.
Otol Neurotol ; 44(7): e497-e503, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442608

RESUMO

OBJECTIVE: 3-D printing offers convenient and low-cost mastoidectomy training; nonetheless, training benefits using 3-D-printed temporal bones remain largely unexplored. In this study, we have collected validity evidence for a low-cost, 3-D-printed temporal bone for mastoidectomy training and established a credible pass/fail score for performance on the model. STUDY DESIGN: A prospective educational study gathering validity evidence using Messick's validity framework. SETTING: Seven Danish otorhinolaryngology training institutions. PARTICIPANTS: Eighteen otorhinolaryngology residents (novices) and 11 experienced otosurgeons (experts). INTERVENTION: Residents and experienced otosurgeons each performed two to three anatomical mastoidectomies on a low-cost, 3-D-printed temporal bone model produced in-house. After drilling, mastoidectomy performances were rated by three blinded experts using a 25-item modified Welling scale (WS). MAIN OUTCOME MEASURE: Validity evidence using Messick's framework including reliability assessment applying both classical test theory and Generalizability theory. RESULTS: Novices achieved a mean score of 13.9 points; experienced otosurgeons achieved 23.2 points. Using the contrasting groups method, we established a 21/25-point pass/fail level. The Generalizability coefficient was 0.91, and 75% of the score variance was attributable to participant performance, indicating a high level of assessment reliability. Subsequent D studies revealed that two raters rating one performance or one rater rating two performances were sufficiently reliable for high-stakes assessment. CONCLUSION: Validity evidence supports using a low-cost, 3-D-printed model for mastoidectomy training. The model can be printed in-house using consumer-grade 3-D printers and serves as an additional training tool in the temporal bone curriculum. For competency-based training, we established a cut-off score of 21 of 25 WS points using the contrasting groups method.


Assuntos
Otolaringologia , Treinamento por Simulação , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Osso Temporal/cirurgia , Mastoidectomia/métodos , Otolaringologia/educação , Treinamento por Simulação/métodos , Competência Clínica
4.
3D Print Med ; 9(1): 12, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062800

RESUMO

BACKGROUND: 3D-printed temporal bone models can potentially provide a cost-effective alternative to cadaver surgery that can be manufactured locally at the training department. The objective of this study was to create a cost-effective 3D-printed model suitable for mastoidectomy training using entry level and commercially available print technologies, enabling individuals, without prior experience on 3D-printing, to manufacture their own models for basic temporal bone training. METHODS: Expert technical professionals and an experienced otosurgeon identified the best material for replicating the temporal bone and created a cost-effective printing routine for the model using entry-level print technologies. Eleven participants at a temporal bone dissection course evaluated the model using a questionnaire. RESULTS: The 3D-printed temporal bone model was printed using a material extrusion 3D-printer with a heat resistant filament, reducing melting during drilling. After printing, a few simple post-processing steps were designed to replicate the dura, sigmoid sinus and facial nerve. Modifying the 3D-printer by installing a direct-drive and ruby nozzle resulted in more successful prints and less need for maintenance. Upon evaluation by otorhinolaryngology trainees, unanimous feedback was that the model provided a good introduction to the mastoidectomy procedure, and supplementing practice to cadaveric temporal bones. CONCLUSION: In-house production of a cost-effective 3D-printed model for temporal bone training is feasible and enables training institutions to manufacture their own models. Further, this work demonstrates the feasibility of creating new temporal bone models with anatomical variation to provide ample training opportunity.

5.
Materials (Basel) ; 14(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200472

RESUMO

Metal-supported oxide cells (MSCs) are considered as the third-generation solid oxide cells (SOCs) succeeding electrolyte-supported (first generation) and anode-supported (second generation) cells, which have gained much attention and progress in the past decade. The use of metal supports and advanced technical methods (such as infiltrated electrodes) has vastly improved cell performance, especially with its rapid startup ability and power density, showing a significant decrease in raw materials cost. However, new degradation mechanisms appeared, limiting the further improvement of the performance and lifetime. This review encapsulates the degradation mechanisms and countermeasures in the field of MSCs, reviewing the challenges and recommendations for future development.

6.
Otolaryngol Head Neck Surg ; 165(5): 617-625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33650897

RESUMO

OBJECTIVE: 3D-printed models hold great potential for temporal bone surgical training as a supplement to cadaveric dissection. Nevertheless, critical knowledge on manufacturing remains scattered, and little is known about whether use of these models improves surgical performance. This systematic review aims to explore (1) methods used for manufacturing and (2) how educational evidence supports using 3D-printed temporal bone models. DATA SOURCES: PubMed, Embase, the Cochrane Library, and Web of Science. REVIEW METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, relevant studies were identified and data on manufacturing and validation and/or training extracted by 2 reviewers. Quality assessment was performed using the Medical Education Research Study Quality Instrument tool; educational outcomes were determined according to Kirkpatrick's model. RESULTS: The search yielded 595 studies; 36 studies were found eligible and included for analysis. The described 3D-printed models were based on computed tomography scans from patients or cadavers. Processing included manual segmentation of key structures such as the facial nerve; postprocessing, for example, consisted of removal of print material inside the model. Overall, educational quality was low, and most studies evaluated their models using only expert and/or trainee opinion (ie, Kirkpatrick level 1). Most studies reported positive attitudes toward the models and their potential for training. CONCLUSION: Manufacturing and use of 3D-printed temporal bones for surgical training are widely reported in the literature. However, evidence to support their use and knowledge about both manufacturing and the effects on subsequent surgical performance are currently lacking. Therefore, stronger educational evidence and manufacturing knowhow are needed for widespread implementation of 3D-printed temporal bones in surgical curricula.


Assuntos
Otolaringologia/educação , Modelagem Computacional Específica para o Paciente , Impressão Tridimensional , Cadáver , Humanos , Osso Temporal/cirurgia
7.
OTO Open ; 5(4): 2473974X211065012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926973

RESUMO

OBJECTIVE: Mastoidectomy is a cornerstone in the surgical management of middle and inner ear diseases. Unfortunately, training is challenged by insufficient access to human cadavers. Three-dimensional (3D) printing of temporal bones could alleviate this problem, but evidence on their educational effectiveness is lacking. It is largely unknown whether training on 3D-printed temporal bones improves mastoidectomy performance, including on cadavers, and how this training compares with virtual reality (VR) simulation. To address this knowledge gap, this study investigated whether training on 3D-printed temporal bones improves cadaveric dissection performance, and it compared this training with the already-established VR simulation. STUDY DESIGN: Prospective cohort study of an educational intervention. SETTING: Tertiary university hospital, cadaver dissection laboratory, and simulation center in Copenhagen, Denmark. METHODS: Eighteen otorhinolaryngology residents (intervention) attending the national temporal bone dissection course received 3 hours of mastoidectomy training on 3D-printed temporal bones. Posttraining cadaver mastoidectomy performances were rated by 3 experts using a validated assessment tool and compared with those of 66 previous course participants (control) who had received time-equivalent VR training prior to dissection. RESULTS: The intervention cohort outperformed the controls during cadaver dissection by 29% (P < .001); their performances were largely similar across training modalities but remained at a modest level (~50% of the maximum score). CONCLUSION: Mastoidectomy skills improved from training on 3D-printed temporal bone and seemingly more so than on time-equivalent VR simulation. Importantly, these skills transferred to cadaveric dissection. Training on 3D-printed temporal bones can effectively supplement cadaver training when learning mastoidectomy.

8.
Micromachines (Basel) ; 12(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442479

RESUMO

The manufacturing of inserts for micro injection moulding made of mortar material is presented in this work. The fabrication of the mortar insert described in this publication relied on a versatile and relatively fast rapid prototyping process based on soft tooling. The mortar insert has a QR code with micro features on its surface, which was replicated in acrylonitrile butadiene styrene (ABS) polymer by the micro injection moulding process. With this approach, it is possible to fabricate hard inserts for micro injection moulding purposes that are able to compete with conventional-made inserts made of tool steel.

9.
J Vis Exp ; (138)2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30124639

RESUMO

The purpose of this paper is to present the method of a soft tooling process chain employing Additive Manufacturing (AM) for fabrication of injection molding inserts with micro surface features. The Soft Tooling inserts are manufactured by Digital Light Processing (vat photo polymerization) using a photopolymer that can withstand relatively high temperaturea. The part manufactured here has four tines with an angle of 60°. Micro pillars (Ø200 µm, aspect ratio of 1) are arranged on the surfaces by two rows. Polyethylene (PE) injection molding with the soft tooling inserts is used to fabricate the final parts. This method demonstrates that it is feasible to obtain injection-molded parts with microstructures on complex geometry by additive manufactured inserts. The machining time and cost is reduced significantly compared to conventional tooling processes based on computer numerical control (CNC) machining. The dimensions of the micro features are influenced by the applied additive manufacturing process. The lifetime of the inserts determines that this process is more suitable for pilot production. The precision of the inserts production is limited by the additive manufacturing process as well.


Assuntos
Desenho Assistido por Computador/estatística & dados numéricos , Equipamentos e Provisões , Imageamento Tridimensional/métodos , Impressão Tridimensional/estatística & dados numéricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA