Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biomol NMR ; 68(3): 225-236, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28653216

RESUMO

A strategy for acquiring structural information from sparsely isotopically labeled large proteins is illustrated with an application to the E. coli heat-shock protein, HtpG (high temperature protein G), a 145 kDa dimer. It uses 13C-alanine methyl labeling in a perdeuterated background to take advantage of the sensitivity and resolution of Methyl-TROSY spectra, as well as the backbone-centered structural information from 1H-13C residual dipolar couplings (RDCs) of alanine methyl groups. In all, 40 of the 47 expected crosspeaks were resolved and 36 gave RDC data. Assignments of crosspeaks were partially achieved by transferring assignments from those made on individual domains using triple resonance methods. However, these were incomplete and in many cases the transfer was ambiguous. A genetic algorithm search for consistency between predictions based on domain structures and measurements for chemical shifts and RDCs allowed 60% of the 40 resolved crosspeaks to be assigned with confidence. Chemical shift changes of these crosspeaks on adding an ATP analog to the apo-protein are shown to be consistent with structural changes expected on comparing previous crystal structures for apo- and complex- structures. RDCs collected on the assigned alanine methyl peaks are used to generate a new solution model for the apo-protein structure.


Assuntos
Alanina/metabolismo , Isótopos de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Coloração e Rotulagem , Metilação , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
2.
J Biomol NMR ; 62(4): 413-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071966

RESUMO

The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100% of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90% of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.


Assuntos
Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Conjuntos de Dados como Assunto , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes
3.
J Struct Funct Genomics ; 15(4): 209-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24989974

RESUMO

High-quality solution NMR structures of immunoglobulin-like domains 7 and 12 from human obscurin-like protein 1 were solved. The two domains share 30% sequence identity and their structures are, as expected, rather similar. The new structures contribute to structural coverage of human cancer associated proteins. Mutations of Arg 812 in domain 7 cause the rare 3-M syndrome, and this site is located in a surface area predicted to be involved in protein-protein interactions.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas de Neoplasias/química , Neoplasias/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
4.
Biochemistry ; 53(35): 5700-9, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25121780

RESUMO

Dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a C-type lectin highly expressed on the surface of antigen-presenting dendritic cells. DC-SIGN mediates interactions among dendritic cells, pathogens, and a variety of epithelia, myeloid cells, and endothelia by binding to high mannose residues on pathogenic invaders or fucosylated residues on the membranes of other immune cells. Although these interactions are normally beneficial, they can also contribute to disease. The structural characterization of binding geometries is therefore of interest as a basis for the construction of mimetics that can mediate the effects of abnormal immune response. Here, we report the structural characteristics of the interaction of the DC-SIGN carbohydrate recognition domain (CRD) with a common fucosylated entity, the Lewis(X) trisaccharide (Le(X)), using NMR methods. Titration of the monomeric DC-SIGN CRD with Le(X) monitored by 2D NMR revealed significant perturbations of DC-SIGN cross-peak positions in (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra and identified residues near the binding site. Additionally, saturation transfer difference (STD) and transferred nuclear Overhauser effect (trNOE) NMR experiments, using a tetrameric form of DC-SIGN, identified binding epitopes and bound conformations of the Le(X) ligand. The restraints derived from these multiple experiments were used to generate models for the binding of Le(X) to the DC-SIGN CRD. Ranking of the models based on the fit of model-based simulations of the trNOE data and STD buildup curves suggested conformations distinct from those seen in previous crystal structures. The new conformations offer insight into how differences between binding of Lewis(X) and mannose-terminated saccharides may be propagated.


Assuntos
Moléculas de Adesão Celular/química , Lectinas Tipo C/química , Antígenos CD15/química , Receptores de Superfície Celular/química , Moléculas de Adesão Celular/genética , Cristalografia por Raios X , Humanos , Lectinas Tipo C/genética , Antígenos CD15/genética , Modelos Moleculares , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Receptores de Superfície Celular/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
5.
J Phys Chem B ; 127(33): 7266-7275, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561575

RESUMO

Protein-DNA interactions play an important role in numerous biological functions within the living cell. In many of these interactions, the DNA helix is significantly distorted upon protein-DNA complex formation. The HhaI restriction-modification system is one such system, where the methylation target is flipped out of the helix when bound to the methyltransferase. However, the base flipping mechanism is not well understood. The dynamics of the binding site of the HhaI methyltransferase and endonuclease (underlined) within the DNA oligomer [d(G1A2T3A4G5C6G7C8T9A10T11C12)]2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs deuterated on the base of nucleotides within and flanking the [5'-GCGC-3']2 sequence indicate that all of these positions are structurally flexible. Previously, conformational flexibility within the phosphodiester backbone and furanose ring within the target sequence has been observed and hypothesized to play a role in the distortion mechanism. However, whether that distortion was occurring through an active or passive mechanism remained unclear. These NMR data demonstrate that although the [5'-GCGC-3']2 sequence is dynamic, the target cytosine is not passively flipping out of the double-helix on the millisecond-picosecond time scale. Additionally, although previous studies have shown that both the furanose ring and phosphodiester backbone experience a change in dynamics upon methylation, which may play a role in recognition and cleavage by the endonuclease, our observations here indicate that methylation has no effect on the dynamics of the base itself.


Assuntos
Metilação de DNA , DNA , Ligação Proteica , Sítios de Ligação , DNA/química , Espectroscopia de Ressonância Magnética , Domínios Proteicos , Conformação de Ácido Nucleico
6.
J Am Chem Soc ; 130(28): 9072-9, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18570423

RESUMO

The dynamics of the phosphodiester backbone in the [5'-GCGC-3'] 2 moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs nonstereospecifically deuterated on the 5' methylene group of nucleotides within the [5'-GCGC-3'] 2 moiety indicated that all of these positions are structurally flexible. Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone and furanose ring of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through not only a loss of mobility but also a change of direction of motion. These NMR data indicate that the [5'-GCGC-3'] 2 moiety is dynamic, with the largest amplitude motions occurring nearest the methylation site. The change of orientation of this moiety in DNA upon methylation may make the molecule less amenable to binding to the HhaI endonuclease.


Assuntos
DNA-Citosina Metilases/química , DNA-Citosina Metilases/metabolismo , DNA/química , DNA/metabolismo , Sítios de Ligação , Simulação por Computador , Metilação de DNA , Deutério , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Termodinâmica
7.
J Am Chem Soc ; 130(23): 7305-14, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18489097

RESUMO

The dynamics of the furanose rings in the GCGC moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied by using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs selectively deuterated on the furanose rings of nucleotides within the 5'-GCGC-3' moiety indicated that all of these positions are structurally flexible. The furanose ring within the deoxycytidine that is the methylation target displays the largest-amplitude structural changes according to the observed deuterium NMR line shapes, whereas the furanose rings of nucleotides more remote from the methylation site have less-mobile furanose rings (i.e., with puckering amplitudes < 0.3 A). Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through the furanose ring. These NMR data indicate that the 5'-GCGC-3' is dynamic, with the largest-amplitude motions occurring nearest the methylation site. The inherent flexibility of this moiety in DNA makes the molecule more amenable to the large-amplitude structural rearrangements that must occur when the DNA binds to the HhaI methyltransferase.


Assuntos
DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Furanos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sítios de Ligação , DNA/síntese química , DNA/metabolismo , Metilação de DNA , Desoxicitidina/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Deutério/química , Modelos Químicos , Modelos Moleculares , Nucleosídeos/química
8.
J Phys Chem B ; 112(44): 13934-44, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18844399

RESUMO

Both solid-state and solution NMR relaxation measurements are routinely used to quantify the internal dynamics of biomolecules, but in very few cases have these two techniques been applied to the same system, and even fewer attempts have been made so far to describe the results obtained through these two methods through a common theoretical framework. We have previously collected both solution 13C and solid-state 2H relaxation measurements for multiple nuclei within the furanose rings of several nucleotides of the DNA sequence recognized by HhaI methyltransferase. The data demonstrated that the furanose rings within the GCGC recognition sequence are very flexible, with the furanose rings of the cytidine, which is the methylation target, experiencing the most extensive motions. To interpret these experimental results quantitatively, we have developed a dynamic model of furanose rings based on the analysis of solid-state 2H line shapes. The motions are modeled by treating bond reorientations as Brownian excursions within a restoring potential. By applying this model, we are able to reproduce the rates of 2H spin-lattice relaxation in the solid and 13C spin-lattice relaxation in solution using comparable restoring force constants and internal diffusion coefficients. As expected, the 13C relaxation rates in solution are less sensitive to motions that are slower than overall molecular tumbling than to the details of global molecular reorientation, but are somewhat more sensitive to motions in the immediate region of the Larmor frequency. Thus, we conclude that the local internal motions of this DNA oligomer in solution and in the hydrated solid state are virtually the same, and we validate an approach to the conjoint analysis of solution and solid-state NMR relaxation and line shapes data, with wide applicability to many biophysical problems.


Assuntos
Carboidratos/química , DNA-Citosina Metilases/química , DNA-Citosina Metilases/metabolismo , DNA/química , DNA/metabolismo , Simulação por Computador , Deutério , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Fatores de Tempo
9.
Can J Chem ; 94(11): 927-935, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28603292

RESUMO

Glycosaminoglycans (GAGs) are an important class of carbohydrates that serve critical roles in blood clotting, tissue repair, cell migration and adhesion, and lubrication. The variable sulfation pattern and iduronate ring conformations in GAGs influence their polymeric structure and nature of interaction. This study characterizes several heparin-like GAG disaccharides and tetrasaccharides using NMR and molecular dynamics simulations to assist in the development of parameters for GAGs within the GLYCAM06 force field. The force field additions include parameters and charges for a transferable sulfate group for O- and N-sulfation, neutral (COOH) forms of iduronic and glucuronic acid, and Δ4,5-unsaturated uronate (ΔUA) residues. ΔUA residues frequently arise from the enzymatic digestion of heparin and heparin sulfate. Simulations of disaccharides containing ΔUA reveal that the presence of sulfation on this residue alters the relative populations of 1H2 and 2H1 ring conformations. Simulations of heparin tetrasaccharides containing N-sulfation in place of N-acetylation on glucosamine residues influence the ring conformations of adjacent iduronate residues.


Les glycosaminoglycanes (GAG) sont une classe importante d'hydrates de carbone qui jouent un rôle crucial dans la coagulation sanguine, la réparation des tissus, la migration et l'adhérence cellulaires, et la lubrification. La disposition variable des groupes sulfate et la conformation du cycle de l'iduronate des GAG influent sur leur structure polymérique et sur la nature des interactions. Dans la présente étude, nous caractérisons divers GAG disaccharidiques et tétrasaccharidiques semblables à l'héparine par RMN et modélisation de dynamique moléculaire en vue de contribuer à la détermination de paramètres pour les GAG dans le champ de force GLYCAM06. Les éléments additionnels au champ de force comprennent les paramètres et les charges associés à un groupe sulfate transférable lors de la O-sulfatation et de la N-sulfatation, les formes neutres (COOH) des acides iduronique et glucuronique et les résidus uronate Δ4,5-insaturés (ΔUA). Des résidus ΔUA sont souvent formés lors de la digestion enzymatique de l'héparine et du sulfate d'héparine. Des modélisations de disaccharides contenant des ΔUA révèlent que la présence de groupes sulfate sur ces résidus modifie les populations relatives des conformations de cycle 1H2 et 2H1. Les modelisations de tétrasaccharides à base d'héparine présentant une N-sulfatation au lieu d'une N-acétylation des résidus glucosamine influent sur les conformations de cycle des résidus iduronate adjacents. [Traduit par la Rédaction].

10.
Protein Sci ; 25(1): 30-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26293815

RESUMO

We have developed an online NMR / X-ray Structure Pair Data Repository. The NIGMS Protein Structure Initiative (PSI) has provided many valuable reagents, 3D structures, and technologies for structural biology. The Northeast Structural Genomics Consortium was one of several PSI centers. NESG used both X-ray crystallography and NMR spectroscopy for protein structure determination. A key goal of the PSI was to provide experimental structures for at least one representative of each of hundreds of targeted protein domain families. In some cases, structures for identical (or nearly identical) constructs were determined by both NMR and X-ray crystallography. NMR spectroscopy and X-ray diffraction data for 41 of these "NMR / X-ray" structure pairs determined using conventional triple-resonance NMR methods with extensive sidechain resonance assignments have been organized in an online NMR / X-ray Structure Pair Data Repository. In addition, several NMR data sets for perdeuterated, methyl-protonated protein samples are included in this repository. As an example of the utility of this repository, these data were used to revisit questions about the precision and accuracy of protein NMR structures first outlined by Levy and coworkers several years ago (Andrec et al., Proteins 2007;69:449-465). These results demonstrate that the agreement between NMR and X-ray crystal structures is improved using modern methods of protein NMR spectroscopy. The NMR / X-ray Structure Pair Data Repository will provide a valuable resource for new computational NMR methods development.


Assuntos
Cristalografia por Raios X , Bases de Dados de Proteínas , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Conformação Proteica , Proteínas/química
11.
J Magn Reson ; 241: 32-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24656078

RESUMO

Structural characterization of biologically important proteins faces many challenges associated with degradation of resolution as molecular size increases and loss of resolution improving tools such as perdeuteration when non-bacterial hosts must be used for expression. In these cases, sparse isotopic labeling (single or small subsets of amino acids) combined with long range paramagnetic constraints and improved computational modeling offer an alternative. This perspective provides a brief overview of this approach and two discussions of potential applications; one involving a very large system (an Hsp90 homolog) in which perdeuteration is possible and methyl-TROSY sequences can potentially be used to improve resolution, and one involving ligand placement in a glycosylated protein where resolution is achieved by single amino acid labeling (the sialyltransferase, ST6Gal1). This is not intended as a comprehensive review, but as a discussion of future prospects that promise impact on important questions in the structural biology area.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Modelos Moleculares , Conformação Molecular , Estrutura Terciária de Proteína , Marcadores de Spin
12.
ACS Chem Biol ; 9(10): 2347-58, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25079510

RESUMO

Calicheamicin γ1I (1) is an enediyne antitumor compound produced by Micromonospora echinospora spp. calichensis, and its biosynthetic gene cluster has been previously reported. Despite extensive analysis and biochemical study, several genes in the biosynthetic gene cluster of 1 remain functionally unassigned. Using a structural genomics approach and biochemical characterization, two proteins encoded by genes from the 1 biosynthetic gene cluster assigned as "unknowns", CalU16 and CalU19, were characterized. Structure analysis revealed that they possess the STeroidogenic Acute Regulatory protein related lipid Transfer (START) domain known mainly to bind and transport lipids and previously identified as the structural signature of the enediyne self-resistance protein CalC. Subsequent study revealed calU16 and calU19 to confer resistance to 1, and reminiscent of the prototype CalC, both CalU16 and CalU19 were cleaved by 1 in vitro. Through site-directed mutagenesis and mass spectrometry, we identified the site of cleavage in each protein and characterized their function in conferring resistance against 1. This report emphasizes the importance of structural genomics as a powerful tool for the functional annotation of unknown proteins.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Enedi-Inos/farmacologia , Micromonospora/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Genômica/métodos , Lipídeos/química , Micromonospora/crescimento & desenvolvimento , Modelos Moleculares , Estrutura Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Mutação/genética , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Phys Chem A ; 109(6): 1152-8, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16833425

RESUMO

We report use of dynamic nuclear magnetic resonance (NMR) to measure the amide rotational barrier in isonicotinamide. A significant challenge to obtaining good transition rates from dynamic NMR data is suppression of errors due to inherent line widths associated with transverse relaxation. We address this challenge with a fitting procedure that incorporates transverse relaxation over the temperature range of interest simply and reliably. The fitting model is nonlinear in only one of the fit parameters, namely, the activation enthalpy. This reduces parameter estimation to solution of a single transcendental equation, which avoids both a fine search over a multidimensional parameter space and extrapolation of a "limiting line width" solely from slow-exchange data. The activation enthalpy Delta H++ measured for isonicotinamide, +14.1 +/- 0.2 kcal/mol, falls between those of its regioisomers picolinamide and nicotinamide, which were reported in an earlier study. In that study, ab initio calculations of the rotational barriers helped to discern the relative importance of steric, electronic, and hydrogen-bonding effects in this biochemically significant combination of pyridine-ring and carboxamide moieties. A direct comparison between isonicotinamide and nicotinamide, where steric and hydrogen-bonding effects differ only slightly, permits a closer study of electronic considerations.


Assuntos
Amidas/química , Niacinamida/química , Algoritmos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Ácidos Picolínicos/química , Teoria Quântica , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA