Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell ; 185(17): 3153-3168.e18, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35926507

RESUMO

The centromere represents a single region in most eukaryotic chromosomes. However, several plant and animal lineages assemble holocentromeres along the entire chromosome length. Here, we compare genome organization and evolution as a function of centromere type by assembling chromosome-scale holocentric genomes with repeat-based holocentromeres from three beak-sedge (Rhynchospora pubera, R. breviuscula, and R. tenuis) and their closest monocentric relative, Juncus effusus. We demonstrate that transition to holocentricity affected 3D genome architecture by redefining genomic compartments, while distributing centromere function to thousands of repeat-based centromere units genome-wide. We uncover a complex genome organization in R. pubera that hides its unexpected octoploidy and describe a marked reduction in chromosome number for R. tenuis, which has only two chromosomes. We show that chromosome fusions, facilitated by repeat-based holocentromeres, promoted karyotype evolution and diploidization. Our study thus sheds light on several important aspects of genome architecture and evolution influenced by centromere organization.


Assuntos
Centrômero , Cyperaceae , Animais , Centrômero/genética , Cyperaceae/genética , Evolução Molecular , Cariótipo , Plantas/genética
2.
Plant J ; 118(6): 1832-1847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461471

RESUMO

Juncus is the largest genus of Juncaceae and was considered holocentric for a long time. Recent findings, however, indicated that 11 species from different clades of the genus have monocentric chromosomes. Thus, the Juncus centromere organization and evolution need to be reassessed. We aimed to investigate the major repetitive DNA sequences of two accessions of Juncus effusus and its centromeric structure by employing whole-genome analyses, fluorescent in situ hybridization, CENH3 immunodetection, and chromatin immunoprecipitation sequencing. We showed that the repetitive fraction of the small J. effusus genome (~270 Mbp/1C) is mainly composed of Class I and Class II transposable elements (TEs) and satellite DNAs. Three identified satellite DNA families were mainly (peri)centromeric, with two being associated with the centromeric protein CENH3, but not strictly centromeric. Two types of centromere organization were discerned in J. effusus: type 1 was characterized by a single CENH3 domain enriched with JefSAT1-155 or JefSAT2-180, whereas type 2 showed multiple CENH3 domains interrupted by other satellites, TEs or genes. Furthermore, while type 1 centromeres showed a higher degree of satellite identity along the array, type 2 centromeres had less homogenized arrays along the multiple CENH3 domains per chromosome. Although the analyses confirmed the monocentric organization of J. effusus chromosomes, our data indicate a more dynamic arrangement of J. effusus centromeres than observed for other plant species, suggesting it may constitute a transient state between mono- and holocentricity.


Assuntos
Centrômero , Cromossomos de Plantas , DNA Satélite , Hibridização in Situ Fluorescente , Centrômero/genética , Cromossomos de Plantas/genética , DNA Satélite/genética , Genoma de Planta/genética , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Chromosome Res ; 31(4): 30, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812264

RESUMO

Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.


Assuntos
Phaseolus , Phaseolus/genética , DNA de Plantas/genética , DNA Satélite/genética , Retroelementos , Filogenia , Genoma de Planta , Evolução Molecular
4.
Mol Phylogenet Evol ; 189: 107930, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717642

RESUMO

The repetitive fraction (repeatome) of eukaryotic genomes is diverse and usually fast evolving, being an important tool for clarify plant systematics. The genus Juncus L. comprises 332 species, karyotypically recognized by having holocentric chromosomes. However, four species were recently described as monocentric, yet our understanding of their genome evolution is largely masked by unclear phylogenetic relationships. Here, we reassess the current Juncus systematics using low-coverage genome skimming data of 33 taxa to construct repeats, nuclear rDNA and plastome-based phylogenetic hypothesis. Furthermore, we characterize the repeatome and chromosomal distribution of Juncus-specific centromeric repeats/CENH3 protein to test the monocentricity reach in the genus. Repeat-base phylogenies revealed topologies congruent with the rDNA tree, but not with the plastome tree. The incongruence between nuclear and plastome chloroplast dataset suggest an ancient hybridization in the divergence of Juncotypus and Tenageia sections 40 Myr ago. The phylogenetic resolution at section level was better fitted with the rDNA/repeat-based approaches, with the recognition of two monophyletic sections (Stygiopsis and Tenageia). We found specific repeatome trends for the main lineages, such as the higher abundances of TEs in the Caespitosi and Iridifolii + Ozophyllum clades. CENH3 immunostaining confirmed the monocentricity of Juncus, which can be a generic synapomorphy for the genus. The heterogeneity of the repeatomes, with high phylogenetic informativeness, identified here may be correlated with their ancient origin (56 Mya) and reveals the potential of comparative genomic analyses for understanding plant systematics and evolution.


Assuntos
Cloroplastos , Filogenia , DNA Ribossômico/genética
5.
Theor Appl Genet ; 136(10): 215, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37751069

RESUMO

KEY MESSAGE: Karyotypes evolve through numerical and structural chromosome rearrangements. We show that Phaseolus leptostachyus, a wild bean, underwent a rapid genome reshuffling associated with the reduction from 11 to 10 chromosome pairs, but without whole genome duplication, the highest chromosome evolution rate known for plants. Plant karyotypes evolve through structural rearrangements often associated with polyploidy or dysploidy. The genus Phaseolus comprises ~ 90 species, five of them domesticated due to their nutritional relevance. Most of the species have 2n = 22 karyotypes and are highly syntenic, except for three dysploid karyotypes of species from the Leptostachyus group (2n = 20) that have accumulated several rearrangements. Here, we investigated the degrees of structural rearrangements among Leptostachyus and other Phaseolus groups by estimating their chromosomal evolution rates (CER). For this, we combined our oligo-FISH barcode system for beans and chromosome-specific painting probes for chromosomes 2 and 3, with rDNA and a centromeric probe to establish chromosome orthologies and identify structural rearrangements across nine Phaseolus species. We also integrated the detected rearrangements with a phylogenomic approach to estimate the CERs for each Phaseolus lineage. Our data allowed us to identify translocations, inversions, duplications and deletions, mostly in species belonging to the Leptostachyus group. Phaseolus leptostachyus showed the highest CER (12.31 rearrangements/My), a tenfold increase in contrast to the 2n = 22 species analysed. This is the highest rate known yet for plants, making it a model species for investigating the mechanisms behind rapid genome reshuffling in early species diversification.


Assuntos
Phaseolus , Phaseolus/genética , Cariótipo , Cariotipagem , Centrômero , Rearranjo Gênico
6.
Ann Bot ; 131(5): 813-825, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815646

RESUMO

BACKGROUND AND AIMS: Satellite DNAs (satDNAs) are repetitive sequences composed by tandemly arranged, often highly homogenized units called monomers. Although satDNAs are usually fast evolving, some satDNA families can be conserved across species separated by several millions of years, probably because of their functional roles in the genomes. Tyba was the first centromere-specific satDNA described for a holocentric organism, until now being characterized for only eight species of the genus Rhynchospora Vahl. (Cyperaceae). Here, we characterized Tyba across a broad sampling of the genus, analysing and comparing its evolutionary patterns with other satDNAs. METHODS: We characterized the structure and sequence evolution of satDNAs across a robust dadated phylogeny based on Hybrid Target-Capture Sequencing (hyb-seq) of 70 species. We mined the repetitive fraction for Tyba-like satellites to compare its features with other satDNAs and to construct a Tyba-based phylogeny for the genus. KEY RESULTS: Our results show that Tyba is present in the majority of examined species of the genus, spanning four of the five major clades and maintaining intrafamily pairwise identity of 70.9% over 31 Myr. In comparison, other satellite families presented higher intrafamily pairwise identity but are phylogenetically restricted. Furthermore, Tyba sequences could be divided into 12 variants grouped into three different clade-specific subfamilies, showing evidence of traditional models of satDNA evolution, such as the concerted evolution and library models. Besides, a Tyba-based phylogeny showed high congruence with the hyb-seq topology. Our results show structural indications of a possible relationship of Tyba with nucleosomes, given its high curvature peaks over conserved regions and overall high bendability values compared with other non-centromeric satellites. CONCLUSIONS: Overall, Tyba shows a remarkable sequence conservation and phylogenetic significance across the genus Rhynchospora, which suggests that functional roles might lead to long-term stability and conservation for satDNAs in the genome.


Assuntos
Cyperaceae , DNA Satélite , DNA Satélite/genética , Cyperaceae/genética , Filogenia , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , Evolução Molecular
7.
Genome ; 66(7): 165-174, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094381

RESUMO

Macroptilium (Benth.) Urb. is a neotropical legume genus from the subtribe Phaseolinae. The investigated species present a stable chromosome number (2n = 22), but differ in their karyotype formulae, suggesting the presence of chromosome rearrangements. In this work, we comparatively analysed the karyotypes of six species (Macroptilium atropurpureum, Macroptilium bracteatum, Macroptilium erythroloma, Macroptilium gracile, Macroptilium lathyroides, and Macroptilium martii) from the two main clades that form the genus. Heterochromatin distribution was investigated with chromomycin A3 (CMA)/4',6-diamidino-2-phenylindole (DAPI) staining and fluorescent in situ hybridization was used to localize the 5S and 35S ribosomal DNA (rDNA) sites. Single copy bacterial artificial chromosomes (BACs) previously mapped in the related genera Phaseolus L. and Vigna Savi were used to establish chromosome orthologies and to investigate possible rearrangements among species. CMA+/DAPI- bands were observed, mostly associated with rDNA sites. Additional weak, pericentromeric bands were observed on several chromosomes. Although karyotypes were similar, species could be differentiated mainly by the number and position of the 5S and 35S rDNA sites. BAC markers demonstrated conserved synteny of the main rDNA sites on orthologous chromosomes 6 and 10, as previously observed for Phaseolus and Vigna. The karyotypes of the six species could be differentiated, shedding light on its karyotype evolution.


Assuntos
Phaseolus , Hibridização in Situ Fluorescente , Cariotipagem , Cariótipo , Phaseolus/genética , DNA Ribossômico/genética , Bandeamento Cromossômico
8.
Chromosome Res ; 30(4): 477-492, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35715657

RESUMO

The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.


Assuntos
Genoma , Phaseolus , Centrômero/genética , Cariótipo , Phaseolus/genética , Cariotipagem , Genoma de Planta , Evolução Molecular
9.
Chromosome Res ; 30(1): 91-107, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089455

RESUMO

Cuscuta is a cytogenetically diverse genus, with karyotypes varying 18-fold in chromosome number and 127-fold in genome size. Each of its four subgenera also presents particular chromosomal features, such as bimodal karyotypes in Pachystigma. We used low coverage sequencing of the Cuscuta nitida genome (subgenus Pachystigma), as well as chromosome banding and molecular cytogenetics of three subgenus representatives, to understand the origin of bimodal karyotypes. All three species, C. nitida, C. africana (2n = 28) and C. angulata (2n = 30), showed heterochromatic bands mainly in the largest chromosome pairs. Eighteen satellite DNAs were identified in C. nitida genome, two showing similarity to mobile elements. The most abundant were present at the largest pairs, as well as the highly abundant ribosomal DNAs. The most abundant Ty1/Copia and Ty3/Gypsy elements were also highly enriched in the largest pairs, except for the Ty3/Gypsy CRM, which also labelled the pericentromeric regions of the smallest chromosomes. This accumulation of repetitive DNA in the larger pairs indicates that these sequences are largely responsible for the formation of bimodal karyotypes in the subgenus Pachystigma. The repetitive DNA fraction is directly linked to karyotype evolution in Cuscuta.


Assuntos
Cuscuta , Cuscuta/genética , DNA Ribossômico/genética , Evolução Molecular , Cariótipo , Filogenia
10.
Mol Biol Rep ; 50(1): 309-318, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331753

RESUMO

BACKGROUND: Historical reconstructions within Podocarpaceae have provided valuable information to disentangle biogeographic scenarios that begun 65 Mya. However, early molecular phylogenies of Podocarpaceae failed to agree on the intergeneric relationships within the family. The aims of this study were to test whether plastome organization is stable within the genus Podocarpus, to estimate the selective regimes affecting plastome protein-coding genes, and to strengthen our understanding of the phylogenetic relationships and biogeographic history. METHODS AND RESULTS: We sequenced the plastomes of four South American species from Patagonia, southern Yungas, and Brazilian subtropical forests. We compared their plastomes to those published from Brazil, Africa, New Zealand, and Southeast Asia, along with representatives from other genera within Podocarpaceae as outgroups. The four newly sequenced plastomes ranged in size between 133,791 bp and 133,991 bp. Gene content and order among chloroplasts from South American, African and Asian Podocarpus were conserved and different from the plastome of P. totara, from New Zealand. Most genes showed substitution patterns consistent with a conservative selective regime. Phylogenies inferred from either complete sequences or protein coding regions were mostly congruent with previous studies, but showed earlier branching of P. salignus, P. totara and P. sellowii. CONCLUSIONS: Highly similar and conserved plastomes of African, South American and Asian species suggest that P. totara plastome should be revised and compared to other species from Oceanic distribution. Furthermore, given such structural conservation, we suggest plastome sequencing is not useful to test whether genomic order can be climatically or geologically structured.


Assuntos
Cloroplastos , Genômica , Filogenia , Sequência de Bases , Brasil
11.
Chromosoma ; 130(2-3): 133-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909141

RESUMO

Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.


Assuntos
Phaseolus , Vigna , Cromossomos de Plantas/genética , Phaseolus/genética , Sintenia , Translocação Genética , Vigna/genética
12.
Planta ; 253(4): 86, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792791

RESUMO

MAIN CONCLUSIONS: While two lineages of retrotransposons were more abundant in larger Passiflora genomes, the satellitome was more diverse and abundant in the smallest genome analysed. Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within Passiflora genus, a tenfold variation in genome size, not attributed to polyploidy, is known. Here, we applied a combined in silico and cytological approach to study the organization and diversification of repetitive elements in three species of this genus representing its known range in genome size variation. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons as the most abundant elements in the three genomes, showing a considerable variation among species. Satellite DNAs (satDNAs) were less representative, but highly diverse between subgenera. Our results clearly confirm that the largest genome species (Passiflora quadrangularis) presents a higher accumulation of repetitive DNA sequences, specially Angela and Tekay elements, making up most of its genome. Passiflora cincinnata, with intermediate genome and from the same subgenus, showed similarity with P. quadrangularis regarding the families of repetitive DNA sequences, but in different proportions. On the other hand, Passiflora organensis, the smallest genome, from a different subgenus, presented greater diversity and the highest proportion of satDNA. Altogether, our data indicates that while large genomes evolved by an accumulation of retrotransposons, the smallest genome known for the genus has evolved by diversification of different repeat types, particularly satDNAs.


Assuntos
DNA Satélite/genética , Genoma de Planta , Passiflora/genética , Retroelementos , Evolução Molecular , Variação Genética , Filogenia
13.
Planta ; 254(2): 27, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236509

RESUMO

MAIN CONCLUSION: The chloroplast genomes of Caesalpinia group species are structurally conserved, but sequence level variation is useful for both phylogenomic and population genetic analyses. Variation in chloroplast genomes (plastomes) has been an important source of information in plant biology. The Caesalpinia group has been used as a model in studies correlating ecological and genomic variables, yet its intergeneric and infrageneric relationships are not fully solved, despite densely sampled phylogenies including nuclear and plastid loci by Sanger sequencing. Here, we present the de novo assembly and characterization of plastomes from 13 species from the Caesalpinia group belonging to eight genera. A comparative analysis was carried out with 13 other plastomes previously available, totalizing 26 plastomes and representing 15 of the 26 known Caesalpinia group genera. All plastomes showed a conserved quadripartite structure and gene repertoire, except for the loss of four ndh genes in Erythrostemon gilliesii. Thirty polymorphic regions were identified for inter- or intrageneric analyses. The 26 aligned plastomes were used for phylogenetic reconstruction, revealing a well-resolved topology, and dividing the Caesalpinia group into two fully supported clades. Sixteen microsatellite (cpSSR) loci were selected from Cenostigma microphyllum for primer development and at least two were cross-amplified in different Leguminosae subfamilies by in vitro or in silico approaches. Four loci were used to assess the genetic diversity of C. microphyllum in the Brazilian Caatinga. Our results demonstrate the structural conservation of plastomes in the Caesalpinia group, offering insights into its systematics and evolution, and provides new genomic tools for future phylogenetic, population genetics, and phylogeographic studies.


Assuntos
Caesalpinia , Genoma de Cloroplastos , Brasil , Caesalpinia/genética , Genética Populacional , Genoma de Cloroplastos/genética , Filogenia
14.
Theor Appl Genet ; 134(11): 3675-3686, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34368889

RESUMO

KEY MESSAGE: An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Hibridização in Situ Fluorescente , Cariotipagem/métodos , Phaseolus/genética , Vigna/genética , Centrômero , Cromossomos de Plantas/genética , Sondas Moleculares
15.
Ann Bot ; 128(7): 835-848, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34050647

RESUMO

BACKGROUND AND AIMS: With the advance of high-throughput sequencing, reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using these data. METHODS: Repeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS datasets and the topologies were compared with a gene-alignment-based phylogenetic tree. KEY RESULTS: All the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01 % in the GS data. Rank correlations between GS and TCS repeat abundances were moderately high (r = 0.58-0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66-0.92). Repeat data obtained by TCS were also reliable in developing a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree. CONCLUSIONS: Our results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , DNA , Genoma de Planta/genética , Filogenia , Análise de Sequência de DNA
16.
Chromosome Res ; 28(3-4): 395-405, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191473

RESUMO

Polyploidy and dysploidy have been reported as the main events in karyotype evolution of plants. In the genus Phaseolus L. (2n = 22), a small monophyletic group of three species, the Leptostachyus group, presents a dysploid karyotype with 2n = 20. It was shown in Phaseolus leptostachyus that the dysploidy was caused by a nested chromosome fusion (NCF) accompanied by several translocations, suggesting a high rate of karyotype evolution in the group. To verify if this karyotype restructuring was a single event or occurred progressively during the evolution of this group, we analysed P. macvaughii, sister to Phaseolus micranthus + P. leptostachyus. Twenty-four genomic clones of P. vulgaris previously mapped on P. leptostachyus, in addition to the 5S and 35S rDNA probes, were used for fluorescence in situ hybridization. Only a single rearrangement was common to the two species: the nested chromosome fusion (NCF) involving chromosomes 10 and 11. The translocation of chromosome 2 is not the same found in P. leptostachyus, and pericentric inversions in chromosomed 3 and 4 were exclusive of P. macvaughii. The other rearrangements observed in P. leptostachyus were not shared with this species, suggesting that they occurred after the separation of these lineages. The presence of private rearrangements indicates a progressive accumulation of karyotype changes in the Leptostachyus group instead of an instant genome-wide repatterning.


Assuntos
Aberrações Cromossômicas , Mapeamento Cromossômico , Citogenética , Rearranjo Gênico , Phaseolus/genética , Mapeamento Cromossômico/métodos , Citogenética/métodos , Evolução Molecular , Genoma de Planta , Hibridização in Situ Fluorescente , Mitose , Translocação Genética
17.
Chromosome Res ; 28(2): 139-153, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31734754

RESUMO

Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within tribe Phaseoleae (Fabaceae), some genera, such as Phaseolus, Vigna, and Cajanus, show small genome and mostly stable chromosome number. Here, we applied a combined computational and cytological approach to study the organization and diversification of repetitive elements in some species of these genera. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons, especially Ogre and Chromovirus elements, making up most of genomes, other than P. acutifolius and Vigna species. Satellite DNAs (SatDNAs) were less representative, but highly diverse among species, showing a clear phylogenetic relationship. In situ localization revealed preferential location at pericentromeres and centromeres for both types of sequences, suggesting a heterogeneous composition, especially for centromeres. Few elements showed subterminal accumulation. Copy number variation among chromosomes within and among species was observed for all nine identified SatDNAs. Altogether, our data pointed two main elements (Ty3/Gypsy retrotransponsons and SatDNAs) to the diversification on the repetitive landscape in Phaseoleae, with a typical set of repeats in each species. The high turnover of these sequences, however, did not affect total genome size.


Assuntos
Variação Genética , Genoma de Planta , Genômica , Phaseolus/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos de Plantas , Biologia Computacional/métodos , DNA de Plantas , Mineração de Dados , Heterogeneidade Genética , Genômica/métodos , Hibridização in Situ Fluorescente , Phaseolus/classificação , Filogenia , Retroelementos , Sequências de Repetição em Tandem
18.
Chromosome Res ; 28(3-4): 293-306, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32654079

RESUMO

Comparative cytogenetic mapping is a powerful approach to gain insights into genome organization of orphan crops, lacking a whole sequenced genome. To investigate the cytogenomic evolution of important Vigna and Phaseolus beans, we built a BAC-FISH (fluorescent in situ hybridization of bacterial artificial chromosome) map of Vigna aconitifolia (Vac, subgenus Ceratotropis), species with no sequenced genome, and compared with V. unguiculata (Vu, subgenus Vigna) and Phaseolus vulgaris (Pv) maps. Seventeen Pv BACs, eight Vu BACs, and 5S and 35S rDNA probes were hybridized in situ on the 11 Vac chromosome pairs. Five Vac chromosomes (Vac6, Vac7, Vac9, Vac10, and Vac11) showed conserved macrosynteny and collinearity between V. unguiculata and P. vulgaris. On the other hand, we observed collinearity breaks, identified by pericentric inversions involving Vac2 (Vu2), Vac4 (Vu4), and Vac3 (Pv3). We also detected macrosynteny breaks of translocation type involving chromosomes 1 and 8 of V. aconitifolia and P. vulgaris; 2 and 3 of V. aconitifolia and P. vulgaris; and 1 and 5 of V. aconitifolia and V. unguiculata. Considering our data and previous BAC-FISH studies, six chromosomes (1, 2, 3, 4, 5, and 8) are involved in major karyotype divergences between genera and five (1, 2, 3, 4, and 5) between Vigna subgenera, including mechanisms such as duplications, inversions, and translocations. Macrosynteny breaks between Vigna and Phaseolus suggest that the major chromosomal rearrangements have occurred within the Vigna clade. Our cytogenomic comparisons bring new light on the degree of shared macrosynteny and mechanisms of karyotype diversification during Vigna and Phaseolus evolution.


Assuntos
Citogenética , Genômica , Phaseolus/genética , Vigna/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Citogenética/métodos , Genoma de Planta , Genômica/métodos , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem
19.
Planta ; 252(4): 49, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918627

RESUMO

MAIN CONCLUSION: Cytogenomic characterization of Erythrostemon hughesii reveals a heterogeneity of repeats in its subtelomeric heterochromatin. Comparative analyses with other Caesalpinia group species reveal a significant reduction in the abundance of Ty3-gypsy/Chromovirus Tekay retrotransposons during its evolution. In numerically stable karyotypes, repetitive DNA variability is one of the main causes of genome and chromosome variation and evolution. Species from the Caesalpinia group (Leguminosae) are karyotypically characterized by 2n = 24, with small chromosomes and highly variable CMA+ heterochromatin banding patterns that correlate with environmental variables. Erythrostemon hughesii differs from other species of the group examined to date for having subtelomeric CMA+ bands; this contrasts with most species in the group which have proximal bands. Here we analyse the repeatome of E. hughesii using genome skimming and chromosomal mapping approaches to characterize the identity of the most abundant repetitive elements and their physical location. The repetitive fraction of E. hughesii comprises 28.73% of the genome. The most abundant elements were retrotransposons (RT) with long terminal repeats (LTR-RT; 9.76%) and satellite DNAs (7.83%). Within the LTR-RTs, the most abundant lineages were: Ty1/copia-Ale (1%), Ty3/gypsy CRM (0.88%) and Ty3/gypsy Athila (0.75%). Using fluorescent in situ hybridization four satellite DNAs and several LTR-RT elements were shown to be present in most subtelomeric CMA+ bands. These results highlight how the repeatome in E. hughesii, a species from Oaxaca state in Mexico, is clearly distinct from Northeast Brazilian species of the Caesalpinia group, mainly due to its high diversity of repeats in its subtelomeric heterochromatic bands and low amount of LTR-RT Ty3/gypsy-Tekay elements. Comparative sequence analysis of Tekay elements from different species is congruent with a clade-specific origin of this LTR-RT after the divergence of the Caesalpinia group. We hypothesize that repeat-rich heterochromatin may play a role in leading to faster genomic divergence between individuals, increasing speciation and diversification.


Assuntos
Caesalpinia , Variação Genética , Genoma de Planta , Heterocromatina , Brasil , Caesalpinia/genética , Evolução Molecular , Genoma de Planta/genética , Heterocromatina/genética , Hibridização in Situ Fluorescente , México , Filogenia
20.
Genome ; 63(9): 437-444, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32758104

RESUMO

Citrus is an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2n = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs. To anchor genomic data with the cytogenetic map of mandarin (Citrus reticulata), the parental species of several economically important hybrids such as sweet orange and clementine, 18 BAC (bacterial artificial chromosome) clones were used. Eleven clementine BACs were positioned by BAC-FISH, doubling the number of chromosome markers so far available for BAC-FISH in citrus. Additionally, six previously mapped BACs were end-sequenced, allowing, together with one BAC previously sequenced, their assignment to scaffolds and the subsequent integration of chromosomes and the genome assembly. This study therefore established correlations between mandarin scaffolds and chromosomes, allowing further structural genomic and comparative study with the sweet orange genome, as well as insights into the chromosomal evolution of the group.


Assuntos
Mapeamento Cromossômico , Citrus/genética , Genoma de Planta , Sequenciamento Completo do Genoma , Sequência de Bases , Cruzamento , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Marcadores Genéticos , Hibridização in Situ Fluorescente , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA