Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Opt Express ; 20(24): 26778-85, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187532

RESUMO

We have applied Fresnel Coherent Diffractive Imaging (FCDI) to image an intact pollen grain from Convallaria majalis. This approach allows us to resolve internal structures without the requirement to chemically treat or slice the sample into thin sections. Coherent X-ray diffraction data from this pollen grain-composed of a hologram and higher resolution scattering information-was collected at a photon energy of 1820 eV and reconstructed using an iterative algorithm. A comparison with images recorded using transmission electron microscopy demonstrates that, while the resolution of these images is limited by the available flux and mechanical stability, we observed structures internal to the pollen grain-the intine/exine separations and pore dimensions-finer than 60 nm. The potential of this technique for further biological imaging applications is discussed.


Assuntos
Algoritmos , Convallaria/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Transmissão/métodos , Pólen/ultraestrutura , Difração de Raios X/métodos , Holografia
2.
Opt Express ; 19(9): 8127-34, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643063

RESUMO

We introduce theoretically and demonstrate experimentally a contrast transfer function based phase retrieval algorithm that reconstructs the projected thickness of an homogeneous sample using a polychromatic x-ray source. We show excellent quantitative recovery of test samples in 2D using a synchrotron source with significant harmonic contamination, and in 3D using a laboratory source.


Assuntos
Teste de Materiais/métodos , Modelos Teóricos , Raios X , Simulação por Computador
3.
Opt Express ; 19(27): 25969-80, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274185

RESUMO

We report experimental demonstrations of a quantitative technique for elemental mapping. The technique operates in full-field imaging mode and uses three intensity measurements at energies across an absorption edge of an element of interest to obtain its elemental distribution. The experimental results show that the technique can overcome some limitations in the conventional Absorption Edge Contrast Imaging. The technique allows for an accurate determination of the elemental distribution in a compound sample even at a low level of percentage composition. It is also robust to the choice of energy intervals.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Fotometria/métodos , Absorção
4.
Opt Lett ; 36(11): 1954-6, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21633413

RESUMO

As the resolution in coherent diffractive imaging improves, interexposure and intraexposure sample dynamics, such as motion, degrade the quality of the reconstructed image. Selecting data sets that include only exposures where tolerably little motion has occurred is an inefficient use of time and flux, especially when detector readout time is significant. We provide an experimental demonstration of an approach in which all images of a data set exhibiting sample motion are combined to improve the quality of a reconstruction. This approach is applicable to more general sample dynamics (including sample damage) that occur during measurement.

5.
Phys Rev Lett ; 106(1): 013903, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231742

RESUMO

This Letter demonstrates that coherent diffractive imaging (CDI), in combination with phase-diversity methods, provides reliable and artefact free high-resolution images. Here, using x rays, experimental results show a threefold improvement in the available image contrast. Furthermore, in conditions requiring low imaging dose, it is demonstrated that phase-diverse CDI provides a factor of 2 improvement in comparison to previous CDI techniques.

6.
Opt Express ; 17(16): 14156-65, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19654826

RESUMO

The concept of an x-ray telescope based on the optics of the eye of certain types of crustacea has been in currency for nearly thirty years. However, it is only in the last decade that the technology to make the telescope and the opportunity to mount it on a suitable space platform have combined to allow the idea to become a reality. Accordingly, we have undertaken a detailed simulation study, updating previous simplified models, to properly characterise the performance of the instrument in orbit. The study reveals details of how the particular characteristics of the lobster-eye optics affect the sensitivity of the instrument and allow us to implement new ideas in data extraction methods.


Assuntos
Astronomia/instrumentação , Materiais Biomiméticos , Crustáceos/fisiologia , Lentes , Fenômenos Fisiológicos Oculares , Visão Ocular/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Modelos Teóricos , Espalhamento de Radiação
7.
Opt Express ; 17(14): 11905-15, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19582105

RESUMO

We present the first experimental demonstration of the astigmatic phase retrieval technique, in which the diffracted wavefield is distorted by cylindrical curvature in two orthogonal directions. A charge-one vortex, a charge-two vortex, and a simple test image are all correctly reconstructed.


Assuntos
Óptica e Fotônica , Algoritmos , Simulação por Computador , Desenho de Equipamento , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação , Lasers , Microscopia/métodos , Dispositivos Ópticos
8.
Cytometry A ; 73(10): 949-57, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18671251

RESUMO

Methods for imaging cellular architecture and ultimately macromolecular complexes and individual proteins, within a cellular environment, are an important goal for cell and molecular biology. Coherent diffractive imaging (CDI) is a method of lensless imaging that can be applied to any individual finite object. A diffraction pattern from a single biological structure is recorded and an iterative Fourier transform between real space and reciprocal space is used to reconstruct information about the architecture of the sample to high resolution. As a test system for cellular imaging, we have applied CDI to an important human pathogen, the malaria parasite, Plasmodium falciparum. We have employed a novel CDI approach, known as Fresnel CDI, which uses illumination with a curved incident wavefront, to image red blood cells infected with malaria parasites. We have examined the intrinsic X-ray absorption contrast of these cells and compared them with cells contrasted with heavy metal stains or immunogold labeling. We compare CDI images with data obtained from the same cells using scanning electron microscopy, light microscopy, and scanning X-ray fluorescence microscopy. We show that CDI can offer new information both within and at the surface of complex biological specimens at a spatial resolution of better than 40 nm. and we demonstrate an imaging modality that conveniently combines scanning X-ray fluorescence microscopy with CDI. The data provide independent confirmation of the validity of the coherent diffractive image and demonstrate that CDI offers the potential to become an important and reliable new high-resolution imaging modality for cell biology. CDI can detect features at high resolution within unsectioned cells.


Assuntos
Eritrócitos/diagnóstico por imagem , Eritrócitos/parasitologia , Plasmodium falciparum/isolamento & purificação , Difração de Raios X/métodos , Animais , Eritrócitos/ultraestrutura , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência , Radiografia , Transfecção
9.
Ultramicroscopy ; 108(9): 937-45, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18502583

RESUMO

Optical coherence theory is used to describe image formation in a telecentric optical system. By assuming a weakly interacting object and by considering points that are not too far from the optical axis, an optical transfer function description is obtained for imaging both the phase and the amplitude components of the object. A dimensionless coordinate system is identified to allow the transfer functions to be expressed independently of the details of the imaging system. Phase-contrast imaging is found to have an essentially coherent behaviour when the coherence length is a factor of 15 larger than the system resolution, and that the coherent region of the illumination therefore does not need to encompass the object.

10.
J Vis Exp ; (126)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28872125

RESUMO

The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.


Assuntos
Fulerenos/metabolismo , Nanopartículas/metabolismo , Difração de Raios X/métodos , Modelos Biológicos
11.
Sci Adv ; 2(9): e1601186, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27626076

RESUMO

X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.


Assuntos
Fulerenos/química , Nanopartículas/química , Difração de Raios X , Cristalografia por Raios X , Elétrons , Lasers , Luz , Síncrotrons , Raios X
12.
Sci Rep ; 4: 6796, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25348877

RESUMO

Isolating compositional information in biological X-ray imaging can be problematic as such information is conflated with thickness and density variations when viewing in projection through a sample. We demonstrate an effective method for identifying variations in material composition by simultaneously using the quantitative phase and magnitude images provided through soft X-ray ptychography. Using this approach we show significantly increased contrast and improved reliability of the identification of intracellular features from uncharacterised samples. While demonstrated for X-ray ptychography, this method is immediately applicable to electron and optical microscopy methods where the complex transmission function of the sample is recovered.


Assuntos
Rastreamento de Células/métodos , Microscopia/métodos , Imagem Molecular , Animais , Meios de Contraste/química , Elétrons , Fibroblastos/ultraestrutura , Camundongos , Raios X
13.
Ultramicroscopy ; 143: 88-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24209602

RESUMO

Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application.


Assuntos
Diagnóstico por Imagem/métodos , Malária Falciparum/diagnóstico , Parasitos/ultraestrutura , Plasmodium falciparum/ultraestrutura , Difração de Raios X/métodos , Animais , Eritrócitos/parasitologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Imagem Óptica/métodos , Sensibilidade e Especificidade
14.
Bone ; 52(1): 126-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22995461

RESUMO

In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within the femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm(3) of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p<0.05). The density of the combined anterior and posterior regions was also significantly lower (p=0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p=0.004) and flattened (p=0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.


Assuntos
Fêmur/citologia , Osteócitos/citologia , Tomografia Computadorizada por Raios X/métodos , Adulto , Fêmur/diagnóstico por imagem , Humanos , Masculino , Adulto Jovem
15.
Sci Rep ; 3: 2288, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23887204

RESUMO

X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present three-dimensional quantitative images of a whole eukaryotic cell by FCDI at a spatial resolution below 70 nm with sufficient phase contrast to distinguish major cellular components. From our data, we estimate that the minimum dose required for a similar resolution is close to that predicted by the Rose criterion, considerably below accepted estimates of the maximum dose a frozen-hydrated cell can tolerate. Based on the dose efficiency, contrast, and resolution achieved, we expect this technique will find immediate applications in tomographic cellular characterisation.


Assuntos
Análise de Célula Única/métodos , Tomografia Computadorizada por Raios X/métodos , Eritrócitos/citologia , Eritrócitos/parasitologia , Humanos
16.
Ultramicroscopy ; 111(8): 1184-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21762656

RESUMO

This paper demonstrates the application of the high sensitivity, low radiation dose imaging method recently presented as phase diverse coherent diffraction imaging, to the study of biological and other weakly scattering samples. The method is applied, using X-ray illumination, to quantitative imaging of the granular precursors of underwater adhesive produced by the marine sandcastle worm, Phragmatopoma californica. We are able to observe the internal structure of the adhesive precursors in a number of states.


Assuntos
Adesivos/química , Poliquetos/química , Algoritmos , Animais , Processamento de Imagem Assistida por Computador , Microscopia/métodos , Estrutura Molecular , Proteínas/química , Difração de Raios X/métodos , Difração de Raios X/estatística & dados numéricos
17.
J Opt Soc Am A Opt Image Sci Vis ; 23(7): 1779-86, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16783444

RESUMO

We apply the method of phase-space tomography to reconstruct x-ray beams focused using a compound refractive lens. We show that it is possible to decouple the effect of aberrations in the optical system from the field and hence measure both them and the original field. We recover the complex coherence function and find that it is consistent with expectations.

18.
J Opt Soc Am A Opt Image Sci Vis ; 22(8): 1691-700, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16134868

RESUMO

We discuss the role of coherence in x-ray imaging and consider how phase-space tomography can be used to extract information about partial coherence. We describe the application of phase-space tomography to x-ray imaging and recover the spatial coherence properties of a one-dimensional soft (1.5 keV) x-ray beam from a synchrotron undulator source. We present phase-space information from a Young's experiment and observe negative regions in the quasi-probability distribution. We show that, given knowledge of the coherence of the beam, we can use partially coherent diffraction data to recover fully coherent information, and we present some simple experimental demonstrations of this capability.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia/métodos , Tomografia Óptica/métodos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Appl Opt ; 42(13): 2422-30, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12737478

RESUMO

A new method that uses optical microscopy to determine the physical structure of lobster-eye x-ray optics is described. This approach offers the ability to predict x-ray performance without having to take an x-ray measurement. An overlapping series of images of the entrance and exit faces of an optic are obtained and examined by purpose-built software. A 24-parameter description of each channel is obtained from which a quantitative analysis of all the major optic defects, except surface roughness, is performed. Results for a planar lobster-eye optic are used to illustrate this technique and discuss its abilities as well as directions for future enhancements.

20.
J Opt Soc Am A Opt Image Sci Vis ; 21(8): 1575-84, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15330486

RESUMO

We review the current work on x-ray phase vortices. We explain the role of an x-ray vortex in phase recovery and speculate on its possible applications in other fields of x-ray optical research. We present our theoretical understanding of the structure of phase vortices and test these predictions against experiment. We present experimental observations of phase vortices with charge greater than 3 and observe that their propagation appears to be consistent with our theoretical models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA