RESUMO
BACKGROUND: Antiviral chemoprophylaxis is recommended for use during influenza outbreaks in nursing homes to prevent transmission and severe disease among non-ill residents. Centers for Disease Control and Prevention (CDC) guidance recommends prophylaxis be initiated for all non-ill residents once an influenza outbreak is detected and be continued for at least 14 days and until seven days after the last laboratory-confirmed influenza case is identified. However, not all facilities strictly adhere to this guidance and the impact of such partial adherence is not fully understood. METHODS: We developed a stochastic compartmental framework to model influenza transmission within an average-sized U.S. nursing home. We compared the number of symptomatic illnesses and hospitalizations under varying prophylaxis implementation strategies, in addition to different levels of prophylaxis uptake and adherence by residents and healthcare personnel (HCP). RESULTS: Prophylaxis implemented according to current guidance reduced total symptomatic illnesses and hospitalizations among residents by an average of 12% and 36%, respectively, compared with no prophylaxis. We did not find evidence that alternative implementations of prophylaxis were more effective: compared to full adoption of current guidance, partial adoption resulted in increased symptomatic illnesses and/or hospitalizations, and longer or earlier adoption offered no additional improvements. In addition, increasing uptake and adherence among nursing home residents was effective in reducing resident illnesses and hospitalizations, but increasing HCP uptake had minimal indirect impacts for residents. CONCLUSIONS: The greatest benefits of influenza prophylaxis during nursing home outbreaks will likely be achieved through increasing uptake and adherence among residents and following current CDC guidance.
RESUMO
BACKGROUND: Menstrual cycle tracking apps (MCTAs) have potential in epidemiological studies of women's health, facilitating real-time tracking of bleeding days and menstrual-associated signs and symptoms. However, information regarding the characteristics of MCTA users versus cycle nontrackers is limited, which may inform generalizability. OBJECTIVE: We compared characteristics among individuals using MCTAs (app users), individuals who do not track their cycles (nontrackers), and those who used other forms of menstrual tracking (other trackers). METHODS: The Ovulation and Menstruation Health Pilot Study tested the feasibility of a digitally enabled evaluation of menstrual health. Recruitment occurred between September 2017 and March 2018. Menstrual cycle tracking behavior, demographic, and general and reproductive health history data were collected from eligible individuals (females aged 18-45 years, comfortable communicating in English). Menstrual cycle tracking behavior was categorized in 3 ways: menstrual cycle tracking via app usage, that via other methods, and nontracking. Demographic factors, health conditions, and menstrual cycle characteristics were compared across the menstrual tracking method (app users vs nontrackers, app users vs other trackers, and other trackers vs nontrackers) were assessed using chi-square or Fisher exact tests. RESULTS: In total, 263 participants met the eligibility criteria and completed the digital survey. Most of the cohort (n=191, 72.6%) was 18-29 years old, predominantly White (n=170, 64.6%), had attained 4 years of college education or higher (n= 209, 79.5%), and had a household income below US $50,000 (n=123, 46.8%). Among all participants, 103 (39%) were MCTA users (app users), 97 (37%) did not engage in any tracking (nontrackers), and 63 (24%) used other forms of tracking (other trackers). Across all groups, no meaningful differences existed in race and ethnicity, household income, and education level. The proportion of ever-use of hormonal contraceptives was lower (n=74, 71.8% vs n=87, 90%, P=.001), lifetime smoking status was lower (n=6, 6% vs n=15, 17%, P=.04), and diagnosis rate of gastrointestinal reflux disease (GERD) was higher (n=25, 24.3% vs n=12, 12.4%, P=.04) in app users than in nontrackers. The proportions of hormonal contraceptives ever used and lifetime smoking status were both lower (n=74, 71.8% vs n=56, 88.9%, P=.01; n=6, 6% vs n=11, 17.5%, P=.02) in app users than in other trackers. Other trackers had lower proportions of ever-use of hormonal contraceptives (n=130, 78.3% vs n=87, 89.7%, P=.02) and higher diagnostic rates of heartburn or GERD (n=39, 23.5% vs n=12, 12.4%, P.03) and anxiety or panic disorder (n=64, 38.6% vs n=25, 25.8%, P=.04) than nontrackers. Menstrual cycle characteristics did not differ across all groups. CONCLUSIONS: Our results suggest that app users, other trackers, and nontrackers are largely comparable in demographic and menstrual cycle characteristics. Future studies should determine reasons for tracking and tracking-related behaviors to further understand whether individuals who use MCTAs are comparable to nontrackers.
Assuntos
Refluxo Gastroesofágico , Gastroenteropatias , Aplicativos Móveis , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Menstruação , Estudos Transversais , Projetos Piloto , Ciclo Menstrual , Ovulação , AnticoncepcionaisRESUMO
BACKGROUND: Extensive data available in electronic health records (EHRs) have the potential to improve asthma care and understanding of factors influencing asthma outcomes. However, this work can be accomplished only when the EHR data allow for accurate measures of severity, which at present are complex and inconsistent. OBJECTIVE: Our aims were to create and evaluate a standardized pediatric asthma severity phenotype based in clinical asthma guidelines for use in EHR-based health initiatives and studies and also to examine the presence and absence of these data in relation to patient characteristics. METHODS: We developed an asthma severity computable phenotype and compared the concordance of different severity components contributing to the phenotype to trends in the literature. We used multivariable logistic regression to assess the presence of EHR data relevant to asthma severity. RESULTS: The asthma severity computable phenotype performs as expected in comparison with national statistics and the literature. Severity classification for a child is maximized when based on the long-term medication regimen component and minimized when based only on the symptom data component. Use of the severity phenotype results in better, clinically grounded classification. Children for whom severity could be ascertained from these EHR data were more likely to be seen for asthma in the outpatient setting and less likely to be older or Hispanic. Black children were less likely to have lung function testing data present. CONCLUSION: We developed a pragmatic computable phenotype for pediatric asthma severity that is transportable to other EHRs.
Assuntos
Asma/diagnóstico , Asma/epidemiologia , Registros Eletrônicos de Saúde , Fenótipo , Fatores Etários , Criança , Humanos , Modelos Logísticos , Testes de Função Respiratória , Índice de Gravidade de DoençaRESUMO
BACKGROUND: With the increased popularity of mobile menstrual tracking apps and boosted Facebook posts, there is a unique opportunity to recruit research study participants from across the globe via these modalities to evaluate women's health. However, no studies to date have assessed the feasibility of using these recruitment sources for epidemiological research on ovulation and menstruation. OBJECTIVE: The objective of this study was to assess the feasibility of recruiting a diverse sample of women to an epidemiological study of ovulation and menstruation (OM) health (OM Global Health Study) using digital recruitment sources. The feasibility and diversity were assessed via click and participation rates, geographic location, BMI, smoking status, and other demographic information. METHODS: Participants were actively recruited via in-app messages using the menstrual tracking app Clue (BioWink GmbH) and a boosted Facebook post by DivaCup (Diva International Inc.). Other passive recruitment methods also took place throughout the recruitment period (eg, email communications, blogs, other social media). The proportion of participants who visited the study website after viewing and clicking the hypertext link (click rates) in the in-app messages and boosted Facebook post and the proportion of participants who completed the surveys per the number of completed consent and eligibility screeners (participation rates) were used to quantify the success of recruiting participants to the study website and study survey completion, respectively. Survey completion was defined as finishing the pregnancy and birth history section of the OM Global Health Study questionnaire. RESULTS: The recruitment period was from February 27, 2018, through January 24, 2020. In-app messages and the boosted Facebook post were seen by 104,000 and 21,400 people, respectively. Overall, 215 participants started the OM Global Health Study survey, of which 140 (65.1%), 39 (18.1%), and 36 (16.8%) participants were recruited via the app, the boosted Facebook post, and other passive recruitment methods, respectively. The click rate via the app was 18.9% (19,700 clicks/104,000 ad views) and 1.6% via the boosted Facebook post (340 clicks/21,400 ad views.) The overall participation rate was 44.6% (198/444), and the average participant age was 21.8 (SD 6.1) years. In terms of geographic and racial/ethnic diversity, 91 (44.2%) of the participants resided outside the United States and 147 (70.7%) identified as non-Hispanic White. In-app recruitment produced the most geographically diverse stream, with 44 (32.8%) of the 134 participants in Europe, 77 (57.5%) in North America, and 13 (9.8%) in other parts of the world. Both human error and nonhuman procedural breakdowns occurred during the recruitment process, including a computer programming error related to age eligibility and a hacking attempt by an internet bot. CONCLUSIONS: In-app messages using the menstrual tracking app Clue were the most successful method for recruiting participants from many geographic regions and producing the greatest numbers of started and completed surveys. This study demonstrates the utility of digital recruitment to enroll participants from diverse geographic locations and provides some lessons to avoid technical recruitment errors in future digital recruitment strategies for epidemiological research.
RESUMO
PURPOSE: Children may be exposed to numerous in-home environmental exposures (IHEE) that trigger asthma exacerbations. Spatially linking social and environmental exposures to electronic health records (EHR) can aid exposure assessment, epidemiology, and clinical treatment, but EHR data on exposures are missing for many children with asthma. To address the issue, we predicted presence of indoor asthma trigger allergens, and estimated effects of their key geospatial predictors. METHODS: Our study samples were comprised of children with asthma who provided self-reported IHEE data in EHR at a safety-net hospital in New England during 2004-2015. We used an ensemble machine learning algorithm and 86 multilevel features (e.g., individual, housing, neighborhood) to predict presence of cockroaches, rodents (mice or rats), mold, and bedroom carpeting/rugs in homes. We reduced dimensionality via elastic net regression and estimated effects by the G-computation causal inference method. RESULTS: Our models reasonably predicted presence of cockroaches (area under receiver operating curves [AUC] = 0.65), rodents (AUC = 0.64), and bedroom carpeting/rugs (AUC = 0.64), but not mold (AUC = 0.54). In models adjusted for confounders, higher average household sizes in census tracts were associated with more reports of pests (cockroaches and rodents). Tax-exempt parcels were associated with more reports of cockroaches in homes. Living in a White-segregated neighborhood was linked with lower reported rodent presence, and mixed residential/commercial housing and newer buildings were associated with more reports of bedroom carpeting/rugs in bedrooms. CONCLUSIONS: We innovatively applied a machine learning and causal inference mixture methodology to detail IHEE among children with asthma using EHR and geospatial data, which could have wide applicability and utility.