Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 584(7820): 215-220, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788735

RESUMO

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure1-5. An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers6. The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition7-9, resulting in a periodically modulated pseudo-magnetic field10-14, which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state15-17. This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

2.
Nano Lett ; 24(18): 5625-5630, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662431

RESUMO

Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid-liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure. To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.

3.
Nano Lett ; 24(14): 4108-4116, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536003

RESUMO

Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.

4.
Phys Rev Lett ; 132(18): 184001, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759191

RESUMO

Nanoscale extension and refinement of the Lucas-Washburn model is presented with a detailed analysis of recent experimental data and extensive molecular dynamics simulations to investigate rapid water flow and water imbibition within nanocapillaries. Through a comparative analysis of capillary rise in hydrophilic nanochannels, an unexpected reversal of the anticipated trend, with an abnormal peak, of imbibition length below the size of 3 nm was discovered in hydrophilic nanochannels, surprisingly sharing the same physical origin as the well-known peak observed in flow rate within hydrophobic nanochannels. The extended imbibition model is applicable across diverse spatiotemporal scales and validated against simulation results and existing experimental data for both hydrophilic and hydrophobic nanochannels.

5.
Phys Chem Chem Phys ; 26(13): 10265-10272, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497764

RESUMO

Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.

6.
Phys Chem Chem Phys ; 26(4): 3285-3295, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197170

RESUMO

In two-dimensional (2D) materials, breaking the inversion symmetry plays an important role in valleytronics. Ferrovalley (FV) materials can achieve spontaneous valley polarization (VP) without additional modulation due to the magnetic exchange interaction and strong spin-orbit coupling. Using first-principles calculations, we predict a new 2D material, Janus FeClSH, which exhibits a large spontaneous VP. This monolayer is a perfect FV material, where the valence band maximum and conduction band minimum are located at the K/K' point. A large VP of 102.95 meV is spontaneously generated for the case of out-of-plane magnetization. Additionally, we propose that the irradiating circularly polarized light can be used to realize VP for the case of in-plane magnetization. Remarkably, a triangular nanoflake of FeClSH with armchair edges can show nontrivial corner states, exhibiting a second-order topological insulator (SOTI) state. The VP effect and SOTI state are tunable with the Hubbard U parameter, making the FeClSH monolayer promising for the study of the coupling between VP and SOTI.

7.
Nano Lett ; 23(21): 9683-9689, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883804

RESUMO

The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors ν = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at ν = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between ν = 0 → 1 and ν = 2 → 3 show anomalous behavior.

8.
Phys Rev Lett ; 130(5): 057001, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800469

RESUMO

A supersolid, a counterintuitive quantum state in which a rigid lattice of particles flows without resistance, has to date not been unambiguously realized. Here we reveal a supersolid ground state of excitons in a double-layer semiconductor heterostructure over a wide range of layer separations outside the focus of recent experiments. This supersolid conforms to the original Chester supersolid with one exciton per supersolid site, as distinct from the alternative version reported in cold-atom systems of a periodic density modulation or clustering of the superfluid. We provide the phase diagram augmented by the supersolid. This new phase appears at layer separations much smaller than the predicted exciton normal solid, and it persists up to a solid-solid transition where the quantum phase coherence collapses. The ranges of layer separations and exciton densities in our phase diagram are well within reach of the current experimental capabilities.

9.
Nano Lett ; 22(23): 9566-9570, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449567

RESUMO

Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.

10.
Nano Lett ; 22(15): 6268-6275, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35857927

RESUMO

Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 °C in an inert atmosphere. Its superconducting transition (Tc) is found at 2.6 K, exceeding the Tc of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.

11.
Nat Mater ; 20(12): 1677-1682, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34446864

RESUMO

The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 104 times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moiré superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance.

12.
Nano Lett ; 21(19): 8103-8110, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34519503

RESUMO

We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.

13.
Phys Chem Chem Phys ; 23(17): 10218-10224, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33881066

RESUMO

In this study, it is predicted by density functional theory calculations that graphene-like novel ultra-thin phases of manganese fluoride crystals, that have nonlayered structures in their bulk form, can be stabilized by fluorination of manganese dichalcogenide crystals. First, it is shown that substitution of fluorine atoms with chalcogens in the manganese dichalcogenide host lattice is favorable. Among possible crystal formations, three stable ultra-thin structures of manganese fluoride, 1H-MnF2, 1T-MnF2 and MnF3, are found to be stable by total energy optimization calculations. In addition, phonon calculations and Raman activity analysis reveal that predicted novel single-layers are dynamically stable crystal structures displaying distinctive characteristic peaks in their vibrational spectrum enabling experimental determination of the corresponding phases. Differing from 1H-MnF2 antiferromagnetic (AFM) large gap semiconductor, 1T-MnF2 and MnF3 single-layers are semiconductors with ferromagnetic (FM) ground state.

14.
J Chem Phys ; 154(11): 114503, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752365

RESUMO

Dielectric properties of nano-confined water are important in several areas of science, i.e., it is relevant in the dielectric double layer that exists in practically all heterogeneous fluid-based systems. Molecular dynamics simulations are used to predict the in-plane dielectric properties of confined water in planar channels of width ranging from sub-nanometer to bulk. Because of suppressed rotational degrees of freedom near the confining walls, the dipole of the water molecules tends to be aligned parallel to the walls, which results in a strongly enhanced in-plane dielectric constant (ε∥) reaching values of about 120 for channels with height 8 Å < h < 10 Å. With the increase in the width of the channel, we predict that ε∥ decreases nonlinearly and reaches the bulk value for h > 70 Å. A stratified continuum model is proposed that reproduces the h > 10 Å dependence of ε∥. For sub-nanometer height channels, abnormal behavior of ε∥ is found with two orders of magnitude reduction of ε∥ around h ∼ 7.5 Å, which is attributed to the formation of a particular ice phase that exhibits long-time (∼µs) stable ferroelectricity. This is of particular importance for the understanding of the influence of confined water on the functioning of biological systems.

15.
Nano Lett ; 20(2): 979-988, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961161

RESUMO

A periodic spatial modulation, as created by a moiré pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moiré patterns, resulting in a so-called supermoiré (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.

16.
Nano Lett ; 20(12): 8634-8639, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33179495

RESUMO

Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 Å in diameter with an estimated density of about 1012 cm-2. The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.

17.
Proc Natl Acad Sci U S A ; 114(48): E10274-E10280, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133405

RESUMO

The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.

18.
Nano Lett ; 19(7): 4678-4683, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31192613

RESUMO

The ability of different materials to display self-limiting growth has recently attracted an enormous amount of attention because of the importance of nanoscale materials in applications for catalysis, energy conversion, (opto)electronics, and so forth. Here, we show that the electrochemical deposition of palladium (Pd) between graphene oxide (GO) sheets result in the self-limiting growth of 5-nm-thick Pd nanosheets. The self-limiting growth is found to be a consequence of the strong interaction of Pd with the confining GO sheets, which results in the bulk growth of Pd being energetically unfavorable for larger thicknesses. Furthermore, we have successfully carried out liquid exfoliation of the resulting Pd-GO laminates to isolate Pd nanosheets and have demonstrated their high efficiency in continuous flow catalysis and electrocatalysis.

19.
Nano Lett ; 19(9): 6475-6481, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426634

RESUMO

Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot  possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.

20.
Phys Chem Chem Phys ; 21(37): 21070-21083, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528958

RESUMO

Using first-principles calculations the effect of topological defects, vacancies, Stone-Wales and anti-site and substitution of atoms, on the structure and electronic properties of monolayer C3N are investigated. Vacancy defects introduce localized states near the Fermi level and a local magnetic moment. While pristine C3N is an indirect semiconductor with a 0.4 eV band gap, with substitution of O, S and Si atoms for C, it remains a semiconductor with a band gap in the range 0.25-0.75 eV, while it turns into a metal with H, Cl, B, P, Li, Na, K, Be and Mg substitution. With F substitution, it becomes a dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal. When replacing the N host atom, C3N turns into: a metal (H, O, S, C, Si, P, Li and Be), ferromagnetic-metal (Mg), half-metal (Ca) and spin-glass semiconductor (Na and K). Moreover, the effects of charging and strain on the electronic properties of Na atom substitution in C3N are investigated. We found that the magnetic moment decreases or increases depending on the type and size of strain (tensile or compression). Our study shows how the band gap and magnetism in monolayer C3N can be tuned by introducing defects and atom substitution. The so engineered C3N can be a good candidate for future low dimensional devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA