Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(29): e2117484120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428907

RESUMO

One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we formulate biologically plausible mechanistic models of the circuit. In particular, we consider a linear circuit model, for which we derive an exact theoretical solution, and a nonnegative circuit model, which we examine through simulations. The latter largely predicts the ORN [Formula: see text] LN synaptic weights found in the connectome and demonstrates that they reflect correlations in ORN activity patterns. Furthermore, this model accounts for the relationship between ORN [Formula: see text] LN and LN-LN synaptic counts and the emergence of different LN types. Functionally, we propose that LNs encode soft cluster memberships of ORN activity, and partially whiten and normalize the stimulus representations in ORNs through inhibitory feedback. Such a synaptic organization could, in principle, autonomously arise through Hebbian plasticity and would allow the circuit to adapt to different environments in an unsupervised manner. We thus uncover a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Finally, our study provides a unified framework for relating structure, activity, function, and learning in neural circuits and supports the conjecture that similarity-matching shapes the transformation of neural representations.


Assuntos
Conectoma , Neurônios Receptores Olfatórios , Animais , Drosophila , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Larva
2.
Neural Comput ; 34(5): 1136-1142, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344992

RESUMO

In this short note, we reify the connection between work on the storage capacity problem in wide two-layer treelike neural networks and the rapidly growing body of literature on kernel limits of wide neural networks. Concretely, we observe that the "effective order parameter" studied in the statistical mechanics literature is exactly equivalent to the infinite-width neural network gaussian process kernel. This correspondence connects the expressivity and trainability of wide two-layer neural networks.


Assuntos
Algoritmos , Redes Neurais de Computação
3.
Biol Cybern ; 116(5-6): 557-568, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070103

RESUMO

An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; and (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. (Neural Comput 29:2925-2954, 2017), which considers nonnegative independent component analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.


Assuntos
Algoritmos , Redes Neurais de Computação , Neurônios/fisiologia , Aprendizagem/fisiologia , Encéfalo
4.
Neural Comput ; 33(5): 1300-1328, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33617744

RESUMO

We propose a novel biologically plausible solution to the credit assignment problem motivated by observations in the ventral visual pathway and trained deep neural networks. In both, representations of objects in the same category become progressively more similar, while objects belonging to different categories become less similar. We use this observation to motivate a layer-specific learning goal in a deep network: each layer aims to learn a representational similarity matrix that interpolates between previous and later layers. We formulate this idea using a contrastive similarity matching objective function and derive from it deep neural networks with feedforward, lateral, and feedback connections and neurons that exhibit biologically plausible Hebbian and anti-Hebbian plasticity. Contrastive similarity matching can be interpreted as an energy-based learning algorithm, but with significant differences from others in how a contrastive function is constructed.


Assuntos
Redes Neurais de Computação , Neurônios , Algoritmos , Retroalimentação , Aprendizado de Máquina Supervisionado
5.
Nature ; 528(7582): 358-63, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26649821

RESUMO

Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.


Assuntos
Artefatos , Vias Neurais/fisiologia , Optogenética , Animais , Corte , Feminino , Tentilhões/fisiologia , Homeostase , Aprendizagem/fisiologia , Masculino , Córtex Motor/citologia , Córtex Motor/lesões , Córtex Motor/fisiologia , Movimento/fisiologia , Neostriado/citologia , Neostriado/lesões , Neostriado/fisiologia , Optogenética/métodos , Desempenho Psicomotor/fisiologia , Ratos Long-Evans , Vocalização Animal/fisiologia
7.
Neural Comput ; 30(1): 84-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957017

RESUMO

Modeling self-organization of neural networks for unsupervised learning using Hebbian and anti-Hebbian plasticity has a long history in neuroscience. Yet derivations of single-layer networks with such local learning rules from principled optimization objectives became possible only recently, with the introduction of similarity matching objectives. What explains the success of similarity matching objectives in deriving neural networks with local learning rules? Here, using dimensionality reduction as an example, we introduce several variable substitutions that illuminate the success of similarity matching. We show that the full network objective may be optimized separately for each synapse using local learning rules in both the offline and online settings. We formalize the long-standing intuition of the rivalry between Hebbian and anti-Hebbian rules by formulating a min-max optimization problem. We introduce a novel dimensionality reduction objective using fractional matrix exponents. To illustrate the generality of our approach, we apply it to a novel formulation of dimensionality reduction combined with whitening. We confirm numerically that the networks with learning rules derived from principled objectives perform better than those with heuristic learning rules.


Assuntos
Aprendizagem/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Algoritmos , Teoria dos Jogos , Humanos
8.
Neural Comput ; 29(11): 2925-2954, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777718

RESUMO

Blind source separation-the extraction of independent sources from a mixture-is an important problem for both artificial and natural signal processing. Here, we address a special case of this problem when sources (but not the mixing matrix) are known to be nonnegative-for example, due to the physical nature of the sources. We search for the solution to this problem that can be implemented using biologically plausible neural networks. Specifically, we consider the online setting where the data set is streamed to a neural network. The novelty of our approach is that we formulate blind nonnegative source separation as a similarity matching problem and derive neural networks from the similarity matching objective. Importantly, synaptic weights in our networks are updated according to biologically plausible local learning rules.


Assuntos
Modelos Biológicos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Animais , Simulação por Computador
9.
Neural Comput ; 27(7): 1461-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25973548

RESUMO

Neural network models of early sensory processing typically reduce the dimensionality of streaming input data. Such networks learn the principal subspace, in the sense of principal component analysis, by adjusting synaptic weights according to activity-dependent learning rules. When derived from a principled cost function, these rules are nonlocal and hence biologically implausible. At the same time, biologically plausible local rules have been postulated rather than derived from a principled cost function. Here, to bridge this gap, we derive a biologically plausible network for subspace learning on streaming data by minimizing a principled cost function. In a departure from previous work, where cost was quantified by the representation, or reconstruction, error, we adopt a multidimensional scaling cost function for streaming data. The resulting algorithm relies only on biologically plausible Hebbian and anti-Hebbian local learning rules. In a stochastic setting, synaptic weights converge to a stationary state, which projects the input data onto the principal subspace. If the data are generated by a nonstationary distribution, the network can track the principal subspace. Thus, our result makes a step toward an algorithmic theory of neural computation.


Assuntos
Aprendizagem , Redes Neurais de Computação , Algoritmos , Modelos Lineares , Modelos Neurológicos , Neurônios , Análise de Componente Principal
10.
Chaos ; 24(2): 023125, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985439

RESUMO

We describe classes of ergodic dynamical systems for which some statistical properties are known exactly. These systems have integer dimension, are not globally dissipative, and are defined by a probability density and a two-form. This definition generalizes the construction of Hamiltonian systems by a Hamiltonian and a symplectic form. Some low dimensional examples are given, as well as a discretized field theory with a large number of degrees of freedom and a local nearest neighbor interaction. We also evaluate unequal-time correlations of these systems without direct numerical simulation, by Padé approximants of a short-time expansion. We briefly speculate on the possibility of constructing chaotic dynamical systems with non-integer dimension and exactly known statistics. In this case there is no probability density, suggesting an alternative construction in terms of a Hopf characteristic function and a two-form.

11.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461424

RESUMO

Feature bagging is a well-established ensembling method which aims to reduce prediction variance by combining predictions of many estimators trained on subsets or projections of features. Here, we develop a theory of feature-bagging in noisy least-squares ridge ensembles and simplify the resulting learning curves in the special case of equicorrelated data. Using analytical learning curves, we demonstrate that subsampling shifts the double-descent peak of a linear predictor. This leads us to introduce heterogeneous feature ensembling, with estimators built on varying numbers of feature dimensions, as a computationally efficient method to mitigate double-descent. Then, we compare the performance of a feature-subsampling ensemble to a single linear predictor, describing a trade-off between noise amplification due to subsampling and noise reduction due to ensembling. Our qualitative insights carry over to linear classifiers applied to image classification tasks with realistic datasets constructed using a state-of-the-art deep learning feature map.

12.
Nat Neurosci ; 26(2): 339-349, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635497

RESUMO

Recent experiments have revealed that neural population codes in many brain areas continuously change even when animals have fully learned and stably perform their tasks. This representational 'drift' naturally leads to questions about its causes, dynamics and functions. Here we explore the hypothesis that neural representations optimize a representational objective with a degenerate solution space, and noisy synaptic updates drive the network to explore this (near-)optimal space causing representational drift. We illustrate this idea and explore its consequences in simple, biologically plausible Hebbian/anti-Hebbian network models of representation learning. We find that the drifting receptive fields of individual neurons can be characterized by a coordinated random walk, with effective diffusion constants depending on various parameters such as learning rate, noise amplitude and input statistics. Despite such drift, the representational similarity of population codes is stable over time. Our model recapitulates experimental observations in the hippocampus and posterior parietal cortex and makes testable predictions that can be probed in future experiments.


Assuntos
Encéfalo , Aprendizagem , Animais , Aprendizagem/fisiologia , Neurônios/fisiologia , Hipocampo , Cabeça , Modelos Neurológicos
13.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961548

RESUMO

Within a single sniff, the mammalian olfactory system can decode the identity and concentration of odorants wafted on turbulent plumes of air. Yet, it must do so given access only to the noisy, dimensionally-reduced representation of the odor world provided by olfactory receptor neurons. As a result, the olfactory system must solve a compressed sensing problem, relying on the fact that only a handful of the millions of possible odorants are present in a given scene. Inspired by this principle, past works have proposed normative compressed sensing models for olfactory decoding. However, these models have not captured the unique anatomy and physiology of the olfactory bulb, nor have they shown that sensing can be achieved within the 100-millisecond timescale of a single sniff. Here, we propose a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This model maps onto the neuron classes of the olfactory bulb, and recapitulates salient features of their connectivity and physiology. For circuit sizes comparable to the human olfactory bulb, we show that this model can accurately detect tens of odors within the timescale of a single sniff. We also show that this model can perform Bayesian posterior sampling for accurate uncertainty estimation. Fast inference is possible only if the geometry of the neural code is chosen to match receptor properties, yielding a distributed neural code that is not axis-aligned to individual odor identities. Our results illustrate how normative modeling can help us map function onto specific neural circuits to generate new hypotheses.

14.
Sci Adv ; 9(9): eade1249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857454

RESUMO

Many animals perceive odorant molecules by collecting information from ensembles of olfactory neurons, where each neuron uses receptors that are tuned to recognize certain odorant molecules with different binding affinity. Olfactory systems are able, in principle, to detect and discriminate diverse odorants using combinatorial coding strategies. We have combined microfluidics and multineuronal imaging to study the ensemble-level olfactory representations at the sensory periphery of the nematode Caenorhabditis elegans. The collective activity of C. elegans chemosensory neurons reveals high-dimensional representations of olfactory information across a broad space of odorant molecules. We reveal diverse tuning properties and dose-response curves across chemosensory neurons and across odorants. We describe the unique contribution of each sensory neuron to an ensemble-level code for volatile odorants. We show that a natural stimuli, a set of nematode pheromones, are also encoded by the sensory ensemble. The integrated activity of the C. elegans chemosensory neurons contains sufficient information to robustly encode the intensity and identity of diverse chemical stimuli.


Assuntos
Caenorhabditis elegans , Olfato , Animais , Odorantes , Microfluídica , Células Receptoras Sensoriais
15.
Chaos ; 22(3): 033117, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020456

RESUMO

We study the asymptotic behavior of the Hopf characteristic function of fractals and chaotic dynamical systems in the limit of large argument. The small argument behavior is determined by the moments, since the characteristic function is defined as their generating function. Less well known is that the large argument behavior is related to the fractal dimension. While this relation has been discussed in the literature, there has been very little in the way of explicit calculation. We attempt to fill this gap, with explicit calculations for the generalized Cantor set and the Lorenz attractor. In the case of the generalized Cantor set, we define a parameter characterizing the asymptotics which we show corresponds exactly to the known fractal dimension. The Hopf characteristic function of the Lorenz attractor is computed numerically, obtaining results which are consistent with Hausdorff or correlation dimension, albeit too crude to distinguish between them.

16.
Elife ; 112022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36524716

RESUMO

Learning from a limited number of experiences requires suitable inductive biases. To identify how inductive biases are implemented in and shaped by neural codes, we analyze sample-efficient learning of arbitrary stimulus-response maps from arbitrary neural codes with biologically-plausible readouts. We develop an analytical theory that predicts the generalization error of the readout as a function of the number of observed examples. Our theory illustrates in a mathematically precise way how the structure of population codes shapes inductive bias, and how a match between the code and the task is crucial for sample-efficient learning. It elucidates a bias to explain observed data with simple stimulus-response maps. Using recordings from the mouse primary visual cortex, we demonstrate the existence of an efficiency bias towards low-frequency orientation discrimination tasks for grating stimuli and low spatial frequency reconstruction tasks for natural images. We reproduce the discrimination bias in a simple model of primary visual cortex, and further show how invariances in the code to certain stimulus variations alter learning performance. We extend our methods to time-dependent neural codes and predict the sample efficiency of readouts from recurrent networks. We observe that many different codes can support the same inductive bias. By analyzing recordings from the mouse primary visual cortex, we demonstrate that biological codes have lower total activity than other codes with identical bias. Finally, we discuss implications of our theory in the context of recent developments in neuroscience and artificial intelligence. Overall, our study provides a concrete method for elucidating inductive biases of the brain and promotes sample-efficient learning as a general normative coding principle.


Assuntos
Inteligência Artificial , Encéfalo , Animais , Camundongos , Viés
17.
Phys Rev E ; 105(6-1): 064118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854590

RESUMO

Understanding how feature learning affects generalization is among the foremost goals of modern deep learning theory. Here, we study how the ability to learn representations affects the generalization performance of a simple class of models: deep Bayesian linear neural networks trained on unstructured Gaussian data. By comparing deep random feature models to deep networks in which all layers are trained, we provide a detailed characterization of the interplay between width, depth, data density, and prior mismatch. We show that both models display samplewise double-descent behavior in the presence of label noise. Random feature models can also display modelwise double descent if there are narrow bottleneck layers, while deep networks do not show these divergences. Random feature models can have particular widths that are optimal for generalization at a given data density, while making neural networks as wide or as narrow as possible is always optimal. Moreover, we show that the leading-order correction to the kernel-limit learning curve cannot distinguish between random feature models and deep networks in which all layers are trained. Taken together, our findings begin to elucidate how architectural details affect generalization performance in this simple class of deep regression models.

18.
Adv Neural Inf Process Syst ; 35: 22018-22034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37476623

RESUMO

For animals to navigate an uncertain world, their brains need to estimate uncertainty at the timescales of sensations and actions. Sampling-based algorithms afford a theoretically-grounded framework for probabilistic inference in neural circuits, but it remains unknown how one can implement fast sampling algorithms in biologically-plausible spiking networks. Here, we propose to leverage the population geometry, controlled by the neural code and the neural dynamics, to implement fast samplers in spiking neural networks. We first show that two classes of spiking samplers-efficient balanced spiking networks that simulate Langevin sampling, and networks with probabilistic spike rules that implement Metropolis-Hastings sampling-can be unified within a common framework. We then show that careful choice of population geometry, corresponding to the natural space of parameters, enables rapid inference of parameters drawn from strongly-correlated high-dimensional distributions in both networks. Our results suggest design principles for algorithms for sampling-based probabilistic inference in spiking neural networks, yielding potential inspiration for neuromorphic computing and testable predictions for neurobiology.

19.
Nat Commun ; 12(1): 2914, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006842

RESUMO

A theoretical understanding of generalization remains an open problem for many machine learning models, including deep networks where overparameterization leads to better performance, contradicting the conventional wisdom from classical statistics. Here, we investigate generalization error for kernel regression, which, besides being a popular machine learning method, also describes certain infinitely overparameterized neural networks. We use techniques from statistical mechanics to derive an analytical expression for generalization error applicable to any kernel and data distribution. We present applications of our theory to real and synthetic datasets, and for many kernels including those that arise from training deep networks in the infinite-width limit. We elucidate an inductive bias of kernel regression to explain data with simple functions, characterize whether a kernel is compatible with a learning task, and show that more data may impair generalization when noisy or not expressible by the kernel, leading to non-monotonic learning curves with possibly many peaks.

20.
Phys Rev E ; 103(2): L020301, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736039

RESUMO

The expressive power of artificial neural networks crucially depends on the nonlinearity of their activation functions. Though a wide variety of nonlinear activation functions have been proposed for use in artificial neural networks, a detailed understanding of their role in determining the expressive power of a network has not emerged. Here, we study how activation functions affect the storage capacity of treelike two-layer networks. We relate the boundedness or divergence of the capacity in the infinite-width limit to the smoothness of the activation function, elucidating the relationship between previously studied special cases. Our results show that nonlinearity can both increase capacity and decrease the robustness of classification, and provide simple estimates for the capacity of networks with several commonly used activation functions. Furthermore, they generate a hypothesis for the functional benefit of dendritic spikes in branched neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA