Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(14): 6051-6056, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34240612

RESUMO

The secondary (ß) relaxation is an intrinsic feature of glassy systems and is crucial for the mechanical properties of metallic glasses. However, it remains puzzling what structural features control the ß-relaxation fundamentally. Here, we use the recently developed nanoglasses exhibiting well-defined structural features at the nanometer scale to interrogate such structure-dynamics relations. We show that an electrodeposited Ni77.5P22.5 nanoglass exhibits promoted ß-relaxation and enhanced microscale tensile plasticity over the most rapidly melt-quenched metallic glass with the same composition. Structurally, the ß-relaxation is sensitive to the interfacial regions among grains in the nanoglasses. Our results reveal a clear correlation between the amorphous nanostructures and the ß-relaxation. It seems that the nanostructuring represents a novel route to obtain high-energy glassy states, that is, the inverse problem of the ultrastable glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA