Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Ecol ; 27(14): 3016-3033, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29900606

RESUMO

Symbiosis plays a fundamental role in nature. Lichens are among the best known, globally distributed symbiotic systems whose ecology is shaped by the requirements of all symbionts forming the holobiont. The widespread lichen-forming fungal genus Stereocaulon provides a suitable model to study the ecology of microscopic green algal symbionts (i.e., phycobionts) within the lichen symbiosis. We analysed 282 Stereocaulon specimens, collected in diverse habitats worldwide, using the algal ITS rDNA and actin gene sequences and fungal ITS rDNA sequences. Phylogenetic analyses revealed a great diversity among the predominant phycobionts. The algal genus Asterochloris (Trebouxiophyceae) was recovered in most sampled thalli, but two additional genera, Vulcanochloris and Chloroidium, were also found. We used variation-partitioning analyses to investigate the effects of climatic conditions, substrate/habitat characteristic, spatial distribution and mycobionts on phycobiont distribution. Based on an analogy, we examined the effects of climate, substrate/habitat, spatial distribution and phycobionts on mycobiont distribution. According to our analyses, the distribution of phycobionts is primarily driven by mycobionts and vice versa. Specificity and selectivity of both partners, as well as their ecological requirements and the width of their niches, vary significantly among the species-level lineages. We demonstrated that species-level lineages, which accept more symbiotic partners, have wider climatic niches, overlapping with the niches of their partners. Furthermore, the survival of lichens on substrates with high concentrations of heavy metals appears to be supported by their association with toxicity-tolerant phycobionts. In general, low specificity towards phycobionts allows the host to associate with ecologically diversified algae, thereby broadening its ecological amplitude.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Líquens/crescimento & desenvolvimento , Simbiose/genética , Ascomicetos/genética , Evolução Biológica , Clorófitas/genética , DNA Espaçador Ribossômico/genética , Ecologia , Ecossistema , Variação Genética , Líquens/genética , Líquens/microbiologia
2.
J Phycol ; 51(3): 507-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26986666

RESUMO

The genus Asterochloris represents one of the most common, widespread, and diverse taxa of lichen photobionts. In this report, we describe and characterize six new species (A. echinata, A. friedlii, A. gaertneri, A. leprarii, A. lobophora, and A. woessiae) that were identified during our recent investigation of photobiont diversity. We found that the species differed genetically, morphologically, ecologically, and with respect to their mycobiont partners. Statistical analyses revealed significant morphological differentiation of all six newly described species, as well as their separation from previously described Asterochloris species. Chloroplast morphology represented the best morphological marker for species delineation. In fact, each species can be recognized by the dominance and unique assemblage of particular chloroplast types. Although genetically well recognized by rapidly evolving internal transcribed spacer rDNA and actin intron markers, all 13 investigated Asterochloris species shared identical small subunit rDNA sequences. We therefore demonstrated that morphologically and ecologically diverse species can frequently be grouped into a single taxonomic unit in whole-transcriptome sequencing studies, considerably affecting the resulting estimates of species diversity. Finally, we demonstrated the presence of isogamous sexual reproduction in Asterochloris, disputing the current symbiotic dogma of the loss of sexual reproduction in algal symbionts.

3.
FEMS Microbiol Ecol ; 98(2)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35134923

RESUMO

Lichenized algae and cyanobacteria are known to be shared and selected by unrelated lichen-forming fungi coexisting in so-called photobiont-mediated guilds. Life in such a guild could be crucial for the survival of a large group of lichen fungi dependent on horizontal transmission of photobionts. Here, we investigate frequent lichen phycobionts of the genus Trebouxia in rock-dwelling lichen communities. We found intensive and repeated sharing of specific Trebouxia assemblages by co-occurring lichens across distant localities. Rock chemistry, expressed as pH, determined the composition of photobiont pools and separated three saxicolous lichen guilds, sharing environmentally specific photobiont groups. Moreover, unlike the majority of lichen fungi, many Trebouxia photobionts represented opportunists in the choice of general substrate form (soil-rock-tree bark/wood), maintaining their pH preferences. Thus, saxicolous communities form just a part of a complex guild system that is in principle mediated by environmentally conditioned groups of naturally co-occurring photobionts. The complexity of the system is influenced by diverse photobiont life strategies, including also dispersal style. The findings of photobionts strictly or predominantly associated with sexually reproducing fungi stimulated us to emphasize the role of free-dispersing photobionts in the establishment and maintenance of lichen guilds.


Assuntos
Clorófitas , Líquens , Fungos/genética , Líquens/microbiologia , Filogenia , Simbiose
4.
Mol Ecol ; 20(18): 3936-48, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21699598

RESUMO

The distribution patterns of symbiotic algae are thought to be conferred mainly by their hosts, however, they may originate in algal environmental requirements as well. In lichens, predominantly terrestrial associations of fungi with algae or cyanobacteria, the ecological preferences of photobionts have not been directly studied so far. Here, we examine the putative environmental requirements in lichenized alga Asterochloris, and search for the existence of ecological guilds in Asterochloris-associating lichens. Therefore, the presence of phylogenetic signal in several environmental traits was tested. Phylogenetic analysis based on the concatenated set of internal transcribed spacer rDNA and actin type I intron sequences from photobionts associated with lichens of the genera Lepraria and Stereocaulon (Stereocaulaceae, Ascomycota) revealed 13 moderately to well-resolved clades. Photobionts from particular algal clades were found to be associated with taxonomically different, but ecologically similar lichens. The rain and sun exposure were the most significant environmental factor, clearly distinguishing the Asterochloris lineages. The photobionts from ombrophobic and ombrophilic lichens were clustered in completely distinct clades. Moreover, two photobiont taxa were obviously differentiated based on their substrate and climatic preferences. Our study, thus reveals that the photobiont, generally the subsidiary member of the symbiotic lichen association, could exhibit clear preferences for environmental factors. These algal preferences may limit the ecological niches available to lichens and lead to the existence of specific lichen guilds.


Assuntos
Clorófitas/genética , Ecossistema , Meio Ambiente , Líquens/microbiologia , Filogenia , Actinas/genética , Sequência de Bases , California , Clorófitas/fisiologia , Primers do DNA/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
5.
Front Microbiol ; 12: 781585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173688

RESUMO

Climatic factors, soil chemistry and geography are considered as major factors affecting lichen distribution and diversity. To determine how these factors limit or support the associations between the symbiotic partners, we revise the lichen symbiosis as a network of relationships here. More than one thousand thalli of terricolous Cladonia lichens were collected at sites with a wide range of soil chemical properties from seven biogeographical regions of Europe. A total of 18 OTUs of the algal genus Asterochloris and 181 OTUs of Cladonia mycobiont were identified. We displayed all realized pairwise mycobiont-photobiont relationships and performed modularity analysis. It revealed four virtually separated modules of cooperating OTUs. The modules differed in mean annual temperature, isothermality, precipitation, evapotranspiration, soil pH, nitrogen, and carbon contents. Photobiont switching was strictly limited to algae from one module, i.e., algae of similar ecological preferences, and only few mycobionts were able to cooperate with photobionts from different modules. Thus, Cladonia mycobionts generally cannot widen their ecological niches through photobiont switching. The modules also differed in the functional traits of the mycobionts, e.g., sexual reproduction rate, presence of soredia, and thallus type. These traits may represent adaptations to the environmental conditions that drive the differentiation of the modules. In conclusion, the promiscuity in Cladonia mycobionts is strictly limited by climatic factors and soil chemistry.

6.
Mol Phylogenet Evol ; 54(1): 36-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19853051

RESUMO

The genus Asterochloris is one of the most common lichen photobionts. We present a molecular investigation of 41 cultured strains, for which nuclear-encoded ITS rDNA and partial actin I sequences were determined. The loci studied revealed considerable differences in their evolutionary dynamics as well as sequence variation. As compared to ITS data, the actin sequences show much greater variation, and the phylogenies yield strong resolution and support of many internal branches. The partitioning of ITS dataset into several regions yielded better node resolution. We recognized 16 well-supported monophyletic lineages, of which one represents the type species of the genus (Asterochloris phycobiontica), and six correspond to species previously classified to the genus Trebouxia (T. erici, T. excentrica, T. glomerata, T. irregularis, T. italiana and T. magna). Only 15% of isolated photobionts considered in our study could be assigned with certainty to previously described species, emphasizing amazing cryptic variability in Asterochloris. Concurrently with the formal delimitation of the genus Asterochloris, we propose new combinations for the former Trebouxia species; furthermore, T. pyriformis is reduced to a synonym of A. glomerata. The present knowledge of global diversity of Asterochloris algae is discussed.


Assuntos
Actinas/genética , Clorófitas/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Filogenia , Clorófitas/classificação , DNA de Algas/genética , Variação Genética , Líquens/classificação , Líquens/genética , Conformação de Ácido Nucleico , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Ecotoxicol Environ Saf ; 73(4): 603-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20031214

RESUMO

The photobiont is considered as the more sensitive partner of lichen symbiosis in metal pollution. For this reason the presence of a metal tolerant photobiont in lichens may be a key factor of ecological success of lichens growing on metal polluted substrata. The photobiont inventory was examined for terricolous lichen community growing in Cu mine-spoil heaps derived by historical mining. Sequences of internal transcribed spacer (ITS) were phylogenetically analyzed using maximum likelihood analyses. A total of 50 ITS algal sequences were obtained from 22 selected lichen taxa collected at three Cu mine-spoil heaps and two control localities. Algae associated with Cladonia and Stereocaulon were identified as members of several Asterochloris lineages, photobionts of cetrarioid lichens clustered with Trebouxia hypogymniae ined. We did not find close relationship between heavy metal content (in localities as well as lichen thalli) and photobiont diversity. Presence of multiple algal genotypes in single lichen thallus has been confirmed.


Assuntos
Ascomicetos/metabolismo , Clorófitas/classificação , Cobre/metabolismo , Líquens/metabolismo , Simbiose , Biodiversidade , Clorófitas/genética , DNA Espaçador Ribossômico/genética , Mineração , Filogenia , Análise de Sequência de DNA , Solo/análise
8.
FEMS Microbiol Ecol ; 85(2): 313-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23530593

RESUMO

The development of characteristic thallus structures in lichen-forming fungi requires the association with suitable photoautotrophic partners. Previous work suggests that fungi have a specific range of compatible photobionts and that selected algal strains are also correlated with the habitat conditions. We selected the rock-inhabiting crust lichen Protoparmeliopsis muralis, which exhibits high flexibility in algal associations. We present a geographically extended and detailed analysis of algal association patterns including thalli which host superficial algal colonies. We sampled 17 localities in Europe, and investigated the photobiont genotypic diversity within and between thalli and compared the diversity of intrathalline photobionts and externally associate algal communities between washed and unwashed thalli by single-strand conformation polymorphism analyses and ITS sequence data. The results show that (1) photobiont population within the lichen thalli is homogeneous; (2) multiple photobiont genotypes occur within single areoles and lobes of individual lichens; and (3) algal communities which superficially colonize the lichen thalli host taxa known as photobionts in unrelated lichens. Photobiont association patterns are extremely flexible in this ecologically versatile crust-forming lichen. We suggest that lichen surfaces represent a potential temporary niche for free-living stages of lichen photobionts, which could facilitate the establishment of further lichens in the proximal area.


Assuntos
Ascomicetos/fisiologia , Clorófitas/classificação , Líquens/classificação , Simbiose , Ascomicetos/citologia , Ascomicetos/genética , Clorófitas/genética , Clorófitas/fisiologia , Ecossistema , Europa (Continente) , Genótipo , Líquens/citologia , Líquens/genética , Filogenia , Polimorfismo Conformacional de Fita Simples
9.
Environ Pollut ; 158(3): 812-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19880227

RESUMO

We investigated lichen diversity in temperate oak forests using standardized protocols. Forty-eight sites were sampled in the Czech Republic, Slovakia and Hungary. The effects of natural environmental predictors and human influences on lichen diversity (lichen diversity value, species richness) were analysed by means of correlation tests. We found that lichen diversity responded differently to environmental predictors between two regions with different human impact. In the industrial region, air pollution was the strongest factor. In the agricultural to highly forested regions, lichen diversity was strongly influenced by forest age and forest fragmentation. We found that several natural factors can in some cases obscure the effect of human influences. Thus, factors of natural gradient must be considered (both statistically and interpretively) when studying human impact on lichen diversity.


Assuntos
Biodiversidade , Monitoramento Ambiental , Líquens/isolamento & purificação , Quercus , Ecossistema , Europa (Continente) , Humanos , Líquens/classificação , Líquens/fisiologia , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA