RESUMO
Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.
Assuntos
Amiloide , Agregados Proteicos , Amiloide/química , Simulação por Computador , Cinética , Simulação de Dinâmica MolecularRESUMO
In multiple myeloma (MM) bone marrow infiltration by monoclonal plasma cells can occur in both focal and diffuse manner, making staging and prognosis rather difficult. The aim of our study was to test whether texture analysis of 18 F-2-deoxy-d-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) images can predict survival in MM patients. Forty-six patients underwent 18 F-FDG-PET/CT before treatment. We used an automated contouring program for segmenting the hottest focal lesion (FL) and a lumbar vertebra for assessing diffuse bone marrow involvement (DI). Maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and texture features such as Coefficient of variation (CoV), were obtained from 46 FL and 46 DI. After a mean follow-up of 51 months, 24 patients died of myeloma and were compared to the 22 survivors. At univariate analysis, FL SUVmax (p = 0.0453), FL SUVmean (p = 0.0463), FL CoV (p = 0.0211) and DI SUVmax (p = 0.0538) predicted overall survival (OS). At multivariate analysis only FL CoV and DI SUVmax were retained in the model (p = 0.0154). By Kaplan-Meier method and log-rank testing, patients with FL CoV below the cut-off had significantly better OS than those with FL CoV above the cut-off (p = 0.0003), as well as patients with DI SUVmax below the threshold versus those with DI SUVmax above the threshold (p = 0.0006). Combining FL CoV and DI SUVmax by using their respective cut-off values, a statistically significant difference was found between the resulting four survival curves (p = 0.0001). Indeed, patients with both FL CoV and DI SUVmax below their respective cut-off values showed the best prognosis. Conventional and texture parameters derived from 18F-FDG PET/CT analysis can predict survival in MM patients by assessing the heterogeneity and aggressiveness of both focal and diffuse infiltration.
Assuntos
Fluordesoxiglucose F18 , Mieloma Múltiplo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/mortalidade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Prognóstico , Idoso de 80 Anos ou mais , Adulto , Seguimentos , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Medula Óssea/diagnóstico por imagem , Medula Óssea/patologia , Taxa de SobrevidaRESUMO
Aggregation-induced emitting (AIE) luminophores are sensitive and easy-to-handle types of probes that allow driving a stimulus-responsive off/on optical tool through the manipulation of the aggregation behavior. In this work, tetraphenylethene (TPE)-phenylalanine derivatives, characterized by strong aggregation-induced luminescence, were obtained through Suzuki-Miyaura cross-coupling reactions. The reaction proved to be straightforwardly applicable in the single amino acid synthesis as well as in the late-stage peptide functionalization by means of both the classical solution-phase reaction and solid-phase synthesis. A comprehensive structural and analytical investigation highlighted the features driving the self-assembly process and its relationship to AIE efficiency. In particular, we showed that the simple slight (asymmetric) extension of the TPE π-systems results in more efficient and brighter emissions, with respect to the simple TPE system itself.
RESUMO
Alpha-synuclein (αSyn) is a small presynaptic protein (14 kDa) that is involved in synucleinopathies including Parkinson's disease (PD). In its native state, the αSyn monomer exists in an unfolded state, and its folding is highly dependent on variations of environmental conditions, mutations and interactions with endogenous and/or exogenous molecules. Recently, there is increasing evidence for a direct interplay between αSyn and microtubules (MTs), whose defects are linked to neurodegenerative diseases, such as PD. Understanding the correlation between αSyn and MTs could be fundamental for the correct comprehension of the undergoing mechanisms of PD. Hence, we chemically synthesized a library of peptides, deriving from both native and PD mutated sequences of the N-terminal domain of αSyn. Their secondary structure was characterized by circular dichroism and Fourier transform infrared (FTIR) experiments, in order to evaluate the effect of PD mutations. Finally, the kinetics of polymerizing tubulin in vitro in the presence of the peptides was evaluated.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Estrutura Secundária de Proteína , Tubulina (Proteína) , PeptídeosRESUMO
Protein-protein interactions (PPIs) have been recognized as a promising target for the development of new drugs, as proved by the growing number of PPI modulators reaching clinical trials. In this context, peptides represent a valid alternative to small molecules, owing to their unique ability to mimic the target protein structure and interact with wider surface areas. Among the possible fields of interest, bacterial PPIs represent an attractive target to face the urgent necessity to fight antibiotic resistance. Growing attention has been paid to the YgjD/YeaZ/YjeE complex responsible for the essential t6A37 tRNA modification in bacteria. We previously identified an α-helix on the surface of Pseudomonas aeruginosa YeaZ, crucial for the YeaZ-YeaZ homodimer formation and the conserved YeaZ-YgjD interactions. Herein, we present our studies for impairing the PPIs involved in the formation of the YeaZ dimers through synthetic peptide derivatives of this helical moiety, both in vitro with purified components and on P. aeruginosa cells. Our results proved the possibility of targeting those PPIs which are usually essential for protein functioning and thus are refractory to mutational changes and antibiotic resistance development.
RESUMO
Lysozyme (E.C. 3.2.1.17), an about 14 kDa protein and pI 11, widely spread in nature, is present in humans mainly in milk, saliva, and intestinal mucus as a part of innate defense mechanisms. It is endowed with antimicrobial activity due to its action as an N-acetylmuramidase, cleaving the 1-4ß glycosidic linkage in the peptidoglycan layer of Gram-positive bacteria. This antimicrobial activity is exerted only against a limited number of Gram-negative bacteria. Different action mechanisms are proposed to explain its activity against Gram-negative bacteria, viruses, and fungi. The antiviral activity prompted the study of a possible application of lysozyme in the treatment of SARS-CoV-2 infections. Among the different sources of lysozyme, the chicken egg albumen was chosen, being the richest source of this protein (c-type lysozyme, 129 amino acids). Interestingly, the activity of lysozyme hydrochloride against SARS-CoV-2 was related to the heating (to about 100 °C) of this molecule. A chemical-physical characterization was required to investigate the possible modifications of native lysozyme hydrochloride by heat treatment. The FTIR analysis of the two preparations of lysozyme hydrochloride showed appreciable differences in the secondary structure of the two protein chains. HPLC and NMR analyses, as well as the enzymatic activity determination, did not show significant modifications.
Assuntos
COVID-19 , Muramidase , Humanos , Muramidase/química , Temperatura Alta , SARS-CoV-2/metabolismo , Bactérias Gram-Negativas/metabolismo , Antivirais/farmacologiaRESUMO
Introduction. The COVID-19 pandemic was recognized as a collective trauma and as a major threat to mental health. Recent literature focused on the stress symptomatology or post-traumatic stress disorder associated to the COVID-19 exposure. The concept that people have a natural inclination toward growth, even under stressful and threatening events, gathered less attention. Previous research has analyzed antecedents of post-traumatic growth (PTG) with non-conclusive results. Methods. The present research aimed at including findings on PTG from personality traits, i.e., sense of control and self-mastery, and distal condition of nurturance and support received by others, i.e., cognitive and affective well-being. Analyses were based on 4934 interviews with adults (Mage = 57.81 years, 55.5% women) from the Swiss Household Panel study. Results. Relationships over time emerged between sense of control and self-mastery on PTG and worries, measured after two years, via the mediation of cognitive and affective well-being. Conclusion. Results come from a large study in a design seldom employed in this type of research and can inform both research and interventions.
RESUMO
Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antivirais/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proteínas de Ligação a DNA/imunologia , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Genes RAG-1/imunologia , Ligantes , Ativação Linfocitária/imunologia , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/metabolismo , Prolina/metabolismo , Ligação Proteica , Linfócitos T Citotóxicos/imunologia , Vacinação/métodosRESUMO
MHC-I epitope presentation to CD8+ T cells is directly dependent on peptide loading and selection during antigen processing. However, the exact molecular bases underlying peptide selection and binding by MHC-I remain largely unknown. Within the peptide-loading complex, the peptide editor tapasin is key to the selection of MHC-I-bound peptides. Here, we have determined an ensemble of crystal structures of MHC-I in complex with the peptide exchange-associated dipeptide GL, as well as the tapasin-associated scoop loop, alone or in combination with candidate epitopes. These results combined with mutation analyses allow us to propose a molecular model underlying MHC-I peptide selection by tapasin. The N termini of bound peptides most probably bind first in the N-terminal and middle region of the MHC-I peptide binding cleft, upon which the peptide C termini are tested for their capacity to dislodge the tapasin scoop loop from the F pocket of the MHC-I cleft. Our results also indicate important differences in peptide selection between different MHC-I alleles.
Assuntos
Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Cristalografia por Raios X , Células HEK293 , Humanos , Leucina/genética , Proteínas de Membrana Transportadoras/química , Camundongos Knockout , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Secundária de ProteínaRESUMO
Gelsolin amyloidosis (AGel) is characterized by multiple systemic and ophthalmic features resulting from pathological tissue deposition of the gelsolin (GSN) protein. To date, no cure is available for the treatment of any form of AGel. More than ten single-point substitutions in the GSN gene are responsible for the occurrence of the disease and, among them, D187N/Y is the most widespread variant. These substitutions undergo an aberrant proteolytic cascade, producing aggregation-prone peptides of 5 and 8 kDa, containing the Gelsolin Amyloidogenic Core, spanning residues 182-192 (GAC182-192). Following a structure-based approach, we designed and synthesized three novel sequence-specific peptidomimetics (LB-5, LB-6, and LB-7) built on a piperidine-pyrrolidine unnatural amino acid. LB-5 and LB-6, but not LB-7, efficiently inhibit the aggregation of the GAC182-192 amyloidogenic peptides at sub-stoichiometric concentrations. These peptidomimetics resulted also effective in vivo, in a C. elegans-based assay, in counteracting the proteotoxicity of aggregated GAC182-192. These data pave the way to a novel pharmacological strategy against AGel and also validate a toolbox exploitable in other amyloidogenic diseases.
Assuntos
Amiloidose Familiar , Amiloidose , Peptidomiméticos , Animais , Gelsolina/metabolismo , Peptidomiméticos/farmacologia , Caenorhabditis elegans/metabolismo , Amiloidose Familiar/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismoRESUMO
Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,ß-peptides containing the repeating unit of a diaryl ß2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.
Assuntos
Ouro , Nanopartículas Metálicas , Animais , Difusão Dinâmica da Luz , Camundongos , Microscopia Eletrônica de Transmissão , PeptídeosRESUMO
Based on the supramolecular interaction between vancomycin (Van), an antibiotic glycopeptide, and D-Ala-D-Ala (DADA) dipeptides, a novel class of artificial metalloenzymes was synthesized and characterized. The presence of an iridium(III) ligand at the N-terminus of DADA allowed the use of the metalloenzyme as a catalyst in the asymmetric transfer hydrogenation of cyclic imines. In particular, the type of link between DADA and the metal-chelating moiety was found to be fundamental for inducing asymmetry in the reaction outcome, as highlighted by both computational studies and catalytic results. Using the [IrCp*(m-I)Cl]Cl â Van complex in 0.1 M CH3COONa buffer at pH 5, a significant 70% (S) e.e. was obtained in the reduction of quinaldine B.
Assuntos
Complexos de Coordenação/química , Dipeptídeos/química , Iminas/química , Vancomicina/química , Catálise , Complexos de Coordenação/síntese química , Dipeptídeos/síntese química , Hidrogenação , Irídio/química , Oxirredução , Vancomicina/síntese químicaRESUMO
Mets7 is a methionine-rich motif present in hCtr-1 transporter that is involved in copper cellular trafficking. Its ability to bind Cu(I) was recently exploited to develop metallopeptide catalysts for Henry condensation. Here, the catalytic activity of Mets7-Cu(I) complex in Michael addition reactions has been evaluated. Furthermore, His7 peptide, in which Met residues have been substituted with His ones, was also prepared. This substitution allowed His7 to coordinate Cu (II), with the obtainment of a stable turn conformation as evicted by CD experiments. His7-Cu (II) proved also to be a better catalyst than Mets7-Cu(I) in the addition reaction. In particular, when the substrate was the (E)-1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one, a conversion of 71% and a significative 58% of e.e. was observed.
Assuntos
Cobre/química , Histidina/química , Oligopeptídeos/química , Propano/síntese química , Sítios de Ligação , Catálise , Humanos , Estrutura Molecular , Propano/análogos & derivados , Propano/químicaRESUMO
In multiple myeloma (MM) patients, 18F-FDG-PET/CT allows either the detection of disease spread by using visual parameters based on the Italian Myeloma criteria for PET Use (IMPeTUs) or the direct measurement of metabolic tumor burden by volume-based parameters such as metabolic tumor volume (MTV). The purpose is to evaluate the contribution of visual and volumetric parameters in the prediction of progression-free survival (PFS) and overall survival (OS) in MM patients. Forty-seven patients in stage IIIA who had undergone whole-body 18F-FDG-PET/CT were retrospectively evaluated. In each patient, visual parameters were determined and compared with volumetric parameters for PFS and OS prediction after a mean follow-up period of 53 months. Among the visual and volumetric parameters tested, a statistically significant difference was found between maximum standardized uptake value, MTV, total lesion glycolysis, and number of lytic lesions of patients with (n = 26) or without (n = 21) progression (p = 0.0400, p = 0.0065, p = 0.015, and p = 0.0220, respectively) and of dead (n = 24) vs survivors (n = 23) (p = 0.0171, p = 0.0037, p = 0.0060, and p = 0.0270, respectively). At univariate and multivariate analysis, MTV and hemoglobin were predictive of both PFS (p = 0.008) and OS (p = 0.0026). The best MTV discriminative value assessed by receiver operating characteristic curve analysis for predicting both PFS and OS was 39.4 ml. By Kaplan-Meier analysis and log-rank test, PFS and OS were significantly better in patients with MTV ≤ 39.4 ml (p = 0.0004 and p = 0.0001, respectively) as compared with those having an MTV higher than the cutoff. The volume-based parameter MTV determined by 18F-FDG-PET/CT may be used in the prediction of PFS and OS in myeloma patients.
Assuntos
Fluordesoxiglucose F18/administração & dosagem , Mieloma Múltiplo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/metabolismo , Estudos RetrospectivosRESUMO
Depsipeptides are biologically active peptide derivatives that possess a high therapeutic interest. The development of depsipeptide mimics characterized by a chemical diversity could lead to compounds with enhanced features and activity. In this work, an on-resin multicomponent procedure for the synthesis of amidino depsipeptide mimics is described. This approach exploits a metal-free 1,3-dipolar cycloaddition of cyclopentanone-proline enamines and sulfonylazides. In this reaction, the obtained primary cycloadduct undergoes a ring opening and molecular rearrangement giving access to a linear sulfonyl amidine functionalized with both a peptide chain and a diazoalkane. The so-obtained diazo function "one pot" reacts with the carboxylic group of N-Fmoc-protected amino acids leading to amidino depsipeptide mimics possessing a C4 aliphatic chain. An important advantage of this procedure is the possibility to easily obtain amidino-functionalized derivatives that are proteolytically stable peptide bond bioisosteres. Moreover, the conformational freedom given by the alkyl chain could promote the obtainment of cyclic depsipeptide with a stabilized secondary structure as demonstrated with both in silico calculations and experimental conformational studies. Finally, labeled depsipeptide mimics can be also synthesized using a fluorescent sulfonylazide in the multicomponent reaction.
Assuntos
Amidinas/síntese química , Ciclopentanos/química , Depsipeptídeos/síntese química , Prolina/química , Amidinas/química , Aminas/química , Azidas/química , Reação de Cicloadição , Ciclopentanos/síntese química , Depsipeptídeos/químicaRESUMO
BACKGROUND: We evaluated the role of [18F]FDG PET/CT in tumor response assessment and prognosis of primary extranodal lymphoma (PEL) patients. METHODS: We examined retrospectively, 56 PEL patients: 31 with aggressive diffuse large B cell lymphoma (DLBCL) and 25 with indolent lymphoma (20 mucosa-associated lymphoid tissue lymphoma and five follicular lymphoma). All patients had undergone [18F]FDG PET/CT at diagnosis (PET-I) and 50 of them also after therapy (PET-II). Moreover, 52 patients were subjected to a mean follow-up period of 76 months. RESULTS: PET-I was positive in 50 (89%) patients (mean SUVmax 10.3±6.7). In the assessment of tumor response, according to Lugano classification, 45 patients showed complete metabolic response (CMR), four patients had partial metabolic response (PMR) and one had progressive metabolic disease (PMD). Based on 66% ΔSUVmax cut-off, among CMR patients, 41 showed a ΔSUVmax>66% whereas among non-responders, four patients showed a ΔSUVmax<66%. At follow-up, univariate analysis showed that age, performance status, prognostic index, ΔSUVmax and Lugano classification predicted progression-free survival (PFS) (P<0.05), while, performance status, prognostic index, ΔSUVmax and Lugano classification predicted overall survival (OS) (P<0.05). At multivariate analysis only Lugano classification was retained in the model for prediction of both PFS (P<0.05) and OS (P<0.05). By Kaplan-Meier analysis and log-rank testing both PFS and OS were significantly better in patients in CMR as compared to patients in PMR or PMD according to Lugano classification (P<0.01). CONCLUSIONS: [18F]FDG PET/CT represents a useful tool in the detection of disease response and in the evaluation of outcome in PEL patients.
Assuntos
Fluordesoxiglucose F18 , Linfoma/diagnóstico por imagem , Linfoma/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Adulto JovemRESUMO
Human cancers frequently display defects in Ag processing and presentation allowing for immune evasion, and they therefore constitute a significant challenge for T cell-based immunotherapy. We have previously demonstrated that the antigenicity of tumor-associated Ags can be significantly enhanced through unconventional residue modifications as a novel tool for MHC class I (MHC-I)-based immunotherapy approaches. We have also previously identified a novel category of cancer neo-epitopes, that is, T cell epitopes associated with impaired peptide processing (TEIPP), that are selectively presented by MHC-I on cells lacking the peptide transporter TAP. In this study, we demonstrate that substitution of the nonanchoring position 3 into a proline residue of the first identified TEIPP peptide, the murine Trh4, results in significantly enhanced recognition by antitumor CTLs toward the wild-type epitope. Although higher immunogenicity has in most cases been associated with increased MHC/peptide complex stability, our results demonstrate that the overall stability of H-2Db in complex with the highly immunogenic altered peptide ligand Trh4-p3P is significantly reduced compared with wild-type H-2Db/Trh4. Comparison of the crystal structures of the H-2Db/Trh4-p3P and H-2Db/Trh4 complexes revealed that the conformation of the nonconventional methionine anchor residue p5M is altered, deleting its capacity to form adequate sulfur-π interactions with H-2Db residues, thus reducing the overall longevity of the complex. Collectively, our results indicate that vaccination with Thr4-p3P significantly enhances T cell recognition of targets presenting the wild-type TEIPP epitope and that higher immunogenicity is not necessarily directly related to MHC/peptide complex stability, opening for the possibility to design novel peptide vaccines with reduced MHC/peptide complex stability.
Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Animais , Antígenos de Neoplasias/química , Epitopos de Linfócito T/imunologia , Antígeno de Histocompatibilidade H-2D/química , Antígeno de Histocompatibilidade H-2D/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos , Prolina , Estabilidade ProteicaRESUMO
The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Staphylococcus aureus , Peptídeos , Staphylococcus aureus/isolamento & purificaçãoRESUMO
The chiral structure of antibiotic vancomycin (Van) was exploited as an innovative coordination sphere for the preparation of an IrCp* based hybrid catalysts. We found that Van is able to coordinate iridium (Ir(III)) and the complexation was demonstrated by several analytical techniques such as MALDI-TOF, UV, Circular dichroism (CD), Raman IR, and NMR. The hybrid system so obtained was employed in the Asymmetric Transfer Hydrogenation (ATH) of cyclic imines allowing to obtain a valuable 61% e.e. (R) in the asymmetric reduction of quinaldine 2. The catalytic system exhibited a saturation kinetics with a calculated efficiency of Kcat/KM = 0.688 h-1mM-1.
Assuntos
Antibacterianos/química , Complexos de Coordenação/química , Iminas/química , Irídio/química , Vancomicina/química , Catálise , Hidrogenação , Cinética , Oxirredução , Quinaldinas/química , EstereoisomerismoRESUMO
ACPA-positive rheumatoid arthritis (RA) is associated with distinct HLA-DR alleles and immune responses to many citrullinated self-antigens. Herein we investigated the T cell epitope confined within α-enolase326-340 in the context of HLA-DRB1*04:01 and assessed the corresponding CD4+ T cells in both the circulation and in the rheumatic joint. Comparative crystallographic analyses were performed for the native and citrullinated α-enolase326-340 peptides in complex with HLA-DRB1*04:01. HLA-tetramers assembled with either the native or citrullinated peptide were used for ex vivo and in vitro assessment of α-enolase-specific T cells in peripheral blood, synovial fluid and synovial tissue by flow cytometry. The native and modified peptides take a completely conserved structural conformation within the peptide-binding cleft of HLA-DRB1*04:01. The citrulline residue-327 was located N-terminally, protruding towards TCRs. The frequencies of T cells recognizing native eno326-340 were similar in synovial fluid and peripheral blood, while in contrast, the frequency of T cells recognizing cit-eno326-340 was significantly elevated in synovial fluid compared to peripheral blood (3.6-fold, pâ¯=â¯0.0150). Additionally, citrulline-specific T cells with a memory phenotype were also significantly increased (1.6-fold, pâ¯=â¯0.0052) in synovial fluid compared to peripheral blood. The native T cell epitope confined within α-enolase326-340 does not appear to lead to complete negative selection of cognate CD4+ T cells. In RA patient samples, only T cells recognizing the citrullinated version of α-enolase326-340 were found at elevated frequencies implicating that neo-antigen formation is critical for breach of tolerance.