Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 13(8): 858-866, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28581482

RESUMO

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.


Assuntos
Acetiltransferases/metabolismo , Evolução Molecular , Metionina/biossíntese , Acinetobacter/enzimologia , Escherichia coli/enzimologia
2.
Biotechnol Bioeng ; 116(11): 2852-2863, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31389000

RESUMO

The efficiency of a versatile in vivo cascade involving a promiscuous alcohol dehydrogenase, obtained from a biodiversity search, and a Baeyer-Villiger monooxygenase was enhanced by the independent control of the production level of each enzyme to produce ε-caprolactone and 3,4-dihydrocoumarin. This goal was achieved by adjusting the copy number per cell of Escherichia coli plasmids. We started from the observation that this number generally correlates with the amount of produced enzyme and demonstrated that an in vivo multi-enzymatic system can be improved by the judicious choice of plasmid, the lower activity of the enzyme that drives the limiting step being counter-balanced by a higher concentration. Using a preconception-free approach to the choice of the plasmid type, we observed positive and negative synergetic effects, sometimes unexpected and depending on the enzyme and plasmid combinations. Experimental optimization of the culture conditions allowed us to obtain the complete conversion of cyclohexanol (16 mM) and 1-indanol (7.5 mM) at a 0.5-L scale. The yield for the conversion of cyclohexanol was 80% (0.7 g ε-caprolactone, for the productivity of 244 mg·L -1 ·h -1 ) and that for 1-indanol 60% (0.3 g 3,4-dihydrocoumarin, for the productivity of 140 mg·L -1 ·h -1 ).


Assuntos
Caproatos/metabolismo , Cumarínicos/metabolismo , Escherichia coli/metabolismo , Lactonas/metabolismo , Engenharia Metabólica , Catálise , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética
3.
Appl Microbiol Biotechnol ; 102(13): 5569-5583, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728726

RESUMO

Most of the "repressor, open reading frame, kinase" (ROK) proteins already characterized so far, and exhibiting a kinase activity, take restrictedly D-glucose as substrate. By exploring the sequenced bacterial diversity, 61 ATP-dependent kinases belonging to the ROK family have been identified and experimentally assayed for the phosphorylation of hexoses. These kinases were mainly found to be thermotolerant and highly active toward D-mannose and D-fructose with notable activities toward D-tagatose. Among them, the ATP-dependent kinase from the mesophile Streptococcus mitis (named ScrKmitis) was biochemically characterized and its substrate spectrum further studied. This enzyme possessed impressive catalytic efficiencies toward D-mannose and D-fructose of 1.5 106 s-1 M-1 and 2.7 105 s-1 M-1, respectively, but also significant ones toward D-tagatose (3.5 102 s-1 M-1) and the unnatural monosaccharides D-altrose (1.1 104 s-1 M-1) and D-talose (3.4 102 s-1 M-1). Specific activities measured for all hexoses showed a high stereopreference for D- over L-series. As proof of concept, 8 hexoses were phosphorylated in moderate to good yields, some of them described for the first time like L-sorbose-5-phosphate unusually phosphorylated in position 5. Its thermotolerance, its wide pH tolerance (from 7 to 10), and temperature range (> 85% activity between 40 and 70 °C) open the way to applications in the enzymatic synthesis of monophosphorylated hexoses.


Assuntos
Frutoquinases/metabolismo , Streptococcus mitis/enzimologia , Fosforilação , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo , Temperatura
4.
Nat Chem Biol ; 10(1): 42-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240508

RESUMO

Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as ß-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape.


Assuntos
Enzimas/metabolismo , Enzimas/química , Conformação Proteica
6.
Front Bioeng Biotechnol ; 9: 686362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277586

RESUMO

Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nit phym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5-8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L-1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L-1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA