Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(10): 5733-5749, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33350006

RESUMO

A substantial amount of below-ground carbon (C) is suggested to be associated with fungi, which may significantly affect the soil C balance in forested ecosystems. Ergosterol from in-growth mesh bags and litterbags was used to estimate fungal biomass production and community composition in drained peatland forests with differing fertility. Extramatrical mycelia (EMM) biomass production was generally higher in the nutrient-poor site, increased with deeper water table level and decreased along the length of the recovery time. EMM biomass production was of the same magnitude as in mineral-soil forests. Saprotrophic fungal biomass production was higher in the nutrient-rich site. Both ectomycorrhizal (ECM) and saprotrophic fungal community composition changed according to site fertility and water table level. ECM fungal community composition with different exploration types may explain the differences in fungal biomass production between peatland forests. Melanin-rich Hyaloscypha may indicate decreased turnover of biomass in nutrient-rich young peatland forest. Genera Lactarius and Laccaria may be important in nutrient rich and Piloderma in the nutrient-poor conditions, respectively. Furthermore, Paxillus involutus and Cortinarius sp. may be important generalists in all sites and responsible for EMM biomass production during the first summer months. Saprotrophs showed a functionally more diverse fungal community in the nutrient-rich site.


Assuntos
Água Subterrânea , Micorrizas , Biomassa , Ecossistema , Fertilidade , Florestas , Fungos , Solo , Microbiologia do Solo , Água
2.
Glob Chang Biol ; 25(5): 1852-1867, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30767385

RESUMO

Globally 40-70 Pg of carbon (C) are stored in coarse woody debris on the forest floor. Climate change may reduce the function of this stock as a C sink in the future due to increasing temperature. However, current knowledge on the drivers of wood decomposition is inadequate for detailed predictions. To define the factors that control wood respiration rate of Norway spruce and to produce a model that adequately describes the decomposition process of this species as a function of time, we used an unprecedentedly diverse analytical approach, which included measurements of respiration, fungal community sequencing, N2 fixation rate, nifH copy number, 14 C-dating as well as N%, δ13 C and C% values of wood. Our results suggest that climate change will accelerate C flux from deadwood in boreal conditions, due to the observed strong temperature dependency of deadwood respiration. At the research site, the annual C flux from deadwood would increase by 27% from the current 117 g C/kg wood with the projected climate warming (RCP4.5). The second most important control on respiration rate was the stage of wood decomposition; at early stages of decomposition low nitrogen content and low wood moisture limited fungal activity while reduced wood resource quality decreased the respiration rate at the final stages of decomposition. Wood decomposition process was best described by a Sigmoidal model, where after 116 years of wood decomposition mass loss of 95% was reached. Our results on deadwood decomposition are important for C budget calculations in ecosystem and climate change models. We observed for the first time that the temperature dependency of N2 fixation, which has a major role at providing N for wood-inhabiting fungi, was not constant but varied between wood density classes due to source supply and wood quality. This has significant consequences on projecting N2 fixation rates for deadwood in changing climate.


Assuntos
Ciclo do Carbono , Florestas , Fungos/fisiologia , Picea , Temperatura , Madeira/metabolismo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Fungos/classificação , Fungos/genética , Nitrogênio/análise , Nitrogênio/metabolismo , Noruega , Madeira/química , Madeira/microbiologia
3.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725205

RESUMO

A decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.) in clay and silt soil microcosms for 10 months, simulating the seasonal temperature changes of the boreal region. Microbial gene copy numbers were higher in clay soils than in silt. All amendments except unextracted bark increased bacterial gene copies in both soils. In turn, all other amendments, but not unextracted bark from an anaerobic digestion process, increased fungal gene copy numbers in silt soil. In clay soil, fungal increase occurred only with unextracted bark and hot water extracted bark. Soil, amendment type and simulated season affected both the bacterial and fungal community composition. Amendments increased bacteria originating from the anaerobic digestion process, as well as dinitrogen fixers and decomposers of plant cells. In turn, unextracted and hot water extracted bark determined the fungal community composition in silt. As fungal abundance increase and community diversification are related to soil carbon acquisition, bark-based amendments to soils can thus contribute to sustainable agriculture.


Assuntos
Microbiota , Solo , Argila , Casca de Planta , Microbiologia do Solo , Bactérias/genética , Carbono , Água
4.
J Environ Qual ; 50(1): 172-184, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33084047

RESUMO

Declining carbon (C) content in agricultural soils threatens soil fertility and makes soil prone to erosion, which could be rectified with organic soil amendments. In a 4-yr field trial, we made a single application of three different organic sludges from the pulp and paper industry and studied their effects on cereal yield, soil C content, and fungal and bacterial composition. In laboratory rainfall simulations, we also studied the effects of the soil amendments on susceptibility to erosion and nutrient mobilization of a clay-textured soil by measuring the quality of percolation water passing through 40-cm intact soil monoliths during 2-d rainfall simulations over four consecutive years after application. A nutrient-poor fiber sludge reduced wheat yield in the first growing season, but there were no other significant effects on cereal yield or grain quality. An input of ∼8 Mg ha-1 C with the soil amendments had only minor effects on soil C content after 4 yr, likely because of fast microbe-mediated turnover. The amendments clearly changed the fungal and bacterial community composition. All amendments significantly reduced suspended solids (SS) and total phosphorus (TP) concentrations in percolation water. The effect declined with time, but the reduction in SS and TP was still >25% 4 yr after application. We attributed the lower tendency for particle detachment in rain simulations to direct interactions of soil minerals with the added particulate organic matter and microbe-derived compounds that stabilize soil aggregates. In soils with low organic matter content, pulp and paper industry by-products can be a viable measure for erosion mitigation.


Assuntos
Esgotos , Solo , Agricultura , Fósforo , Chuva
5.
Sci Total Environ ; 731: 138955, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32417473

RESUMO

Short-term agronomic and environmental benefits are fundamental factors in encouraging farmers to use biochar on a broad scale. The short-term impacts of forest residue biochar (BC) on the productivity and carbon (C) storage of arable boreal clay soil were studied in a field experiment. In addition, rain simulations and aggregate stability tests were carried out to investigate the potential of BC to reduce nutrient export to surface waters. A BC addition of 30 t ha-1 increased soil test phosphorus and decreased bulk density in the surface soil but did not significantly change pH or water retention properties, and most importantly, did not increase the yield. There were no changes in the bacterial or fungal communities, or biomasses. Soil basal respiration was higher in BC-amended plots in the spring, but no differences in respiration rates were detected in the fall two years after the application. Rain simulation experiments did not support the use of BC in reducing erosion or the export of nutrients from the field. Of the C added, on average 80% was discovered in the 0-45 cm soil layer one year after the application. Amendment of boreal clay soil with a high rate of BC characterized by a moderately alkaline pH, low surface functionalities, and a recalcitrant nature, did not induce such positive impacts that would unambiguously motivate farmers to invest in BC. BC use seems unviable from the farmer's perspective but could play a role in climate change mitigation, as it will likely serve as long-term C storage.


Assuntos
Argila , Solo , Carvão Vegetal , Florestas
6.
Front Microbiol ; 7: 214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941732

RESUMO

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

7.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26066028

RESUMO

Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen.


Assuntos
Mudança Climática , Consórcios Microbianos/fisiologia , Microbiologia do Solo , Áreas Alagadas , Archaea/genética , Archaea/fisiologia , Regiões Árticas , Basidiomycota/genética , Basidiomycota/fisiologia , Ecossistema , Consórcios Microbianos/genética , Mortierella/genética , Mortierella/fisiologia , Micorrizas/genética , RNA Ribossômico 16S/genética , Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA