Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724502

RESUMO

N6-methyl adenosine (m6A) is a widespread internal mRNA modification impacting the expression of numerous genes. Here, we characterize auxin-related defects among the pleiotropic phenotypes of hypomorphic Arabidopsis thaliana mutants with impaired m6A status and reveal that they show strong resistance to exogenously applied auxin. By combining major published m6A datasets, we propose that among high-confidence target transcripts emerge those encoding the main components required for auxin signaling, including the TIR1/AFB auxin receptors and ARF transcriptional regulators. We also observe subtle changes in endogenous levels of indole-3-acetic acid metabolites in these hypomorphic lines, which correlate with the methylation status of indole-3-acetic acid amidohydrolase transcripts. In addition, we reveal that reduced m6A levels lead to defects in endodermal patterning in the primary root arising from impaired timing of periclinal cell divisions. These defects can be reverted by inhibition of auxin signaling. Together, our data underline that m6A likely affects auxin-dependent processes at multiple levels.

2.
Proc Natl Acad Sci U S A ; 120(48): e2308587120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991945

RESUMO

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Árvores , Lactonas , Regulação da Expressão Gênica de Plantas
3.
Proc Natl Acad Sci U S A ; 119(31): e2121058119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878023

RESUMO

Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Hormônios Peptídicos , Raízes de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases , Raízes de Plantas/crescimento & desenvolvimento
4.
Plant J ; 116(6): 1825-1841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682018

RESUMO

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fluorescência , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Hormônios/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Exp Bot ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938164

RESUMO

Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.

6.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203617

RESUMO

Auxin amino acid conjugates are considered to be storage forms of auxins. Previous research has shown that indole-3-acetyl-L-alanine (IAA-Ala), indole-3-propionyl-L-alanine (IPA-Ala) and indole-3-butyryl-L-alanine (IBA-Ala) affect the root growth of Brassica rapa seedlings. To elucidate the potential mechanism of action of the conjugates, we treated B. rapa seedlings with 0.01 mM IAA-, IPA- and IBA-Ala and investigated their effects on the auxin metabolome and transcriptome. IBA-Ala and IPA-Ala caused a significant inhibition of root growth and a decrease in free IAA compared to the control and IAA-Ala treatments. The identification of free auxins IBA and IPA after feeding experiments with IBA-Ala and IPA-Ala, respectively, confirms their hydrolysis in vivo and indicates active auxins responsible for a stronger inhibition of root growth. IBA-Ala caused the induction of most DEGs (807) compared to IPA-Ala (417) and IAA-Ala (371). All treatments caused similar trends in transcription profile changes when compared to control treatments. The majority of auxin-related DEGs were found after IBA-Ala treatment, followed by IPA-Ala and IAA-Ala, which is consistent with the apparent root morphology. In addition to most YUC genes, which showed a tendency to be downregulated, transcripts of auxin-related DEGs that were identified (UGT74E2, GH3.2, SAUR, IAA2, etc.) were more highly expressed after all treatments. Our results are consistent with the hypothesis that the hydrolysis of conjugates and the release of free auxins are responsible for the effects of conjugate treatments. In conclusion, free auxins released by the hydrolysis of all auxin conjugates applied affect gene regulation, auxin homeostasis and ultimately root growth inhibition.


Assuntos
Brassica rapa , Gastrópodes , Animais , Ácidos Indolacéticos/farmacologia , Brassica rapa/genética , Transcriptoma , Indóis , Alanina , Plântula/genética
7.
New Phytol ; 235(1): 263-275, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322877

RESUMO

Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Salinidade , Água/metabolismo
8.
New Phytol ; 234(1): 149-163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032334

RESUMO

The CLAVATA pathway is a key regulator of stem cell function in the multicellular shoot tips of Arabidopsis, where it acts via the WUSCHEL transcription factor to modulate hormone homeostasis. Broad-scale evolutionary comparisons have shown that CLAVATA is a conserved regulator of land plant stem cell function, but CLAVATA acts independently of WUSCHEL-like (WOX) proteins in bryophytes. The relationship between CLAVATA, hormone homeostasis and the evolution of land plant stem cell functions is unknown. Here we show that in the moss, Physcomitrella (Physcomitrium patens), CLAVATA affects stem cell activity by modulating hormone homeostasis. CLAVATA pathway genes are expressed in the tip cells of filamentous tissues, regulating cell identity, filament branching, plant spread and auxin synthesis. The receptor-like kinase PpRPK2 plays the major role, and Pprpk2 mutants have abnormal responses to cytokinin, auxin and auxin transport inhibition, and show reduced expression of PIN auxin transporters. We propose a model whereby PpRPK2 modulates auxin gradients in filaments to determine stem cell identity and overall plant form. Our data indicate that CLAVATA-mediated auxin homeostasis is a fundamental property of plant stem cell function, probably exhibited by the last shared common ancestor of land plants.


Assuntos
Proteínas de Arabidopsis , Briófitas , Bryopsida , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo
9.
Plant Physiol ; 187(1): 103-115, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618129

RESUMO

Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates.


Assuntos
Aminoácidos/metabolismo , Dioxigenases/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Oxirredução
10.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328357

RESUMO

Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress responses. Here, we investigated the regulation of the photoperiod stress response in Arabidopsis thaliana by auxin and its interaction with CK. Transcriptome analysis revealed an altered transcript abundance of numerous auxin metabolism and signaling genes after photoperiod stress treatment. The changes appeared earlier and were stronger in the photoperiod-stress-sensitive CK receptor mutant arabidopsis histidine kinase 2 (ahk2),3 compared to wild-type plants. The concentrations of indole-3-acetic acid (IAA), IAA-Glc and IAA-Asp increased in both genotypes, but the increases were more pronounced in ahk2,3. Genetic analysis revealed that the gain-of-function YUCCA 1 (YUC1) mutant, yuc1D, displayed an increased photoperiod stress sensitivity. In contrast, a loss of the auxin receptors TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 in wild-type and ahk2,3 background caused a reduced photoperiod stress response. Overall, this study revealed that auxin promotes response to photoperiod stress antagonizing the protective CK.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Fotoperíodo , Raízes de Plantas/metabolismo
11.
BMC Plant Biol ; 21(1): 602, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922457

RESUMO

BACKGROUND: The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. RESULTS: Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. CONCLUSIONS: NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Metabolismo , Oxirredução , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Análise Espaço-Temporal , Estresse Fisiológico , Distribuição Tecidual
12.
J Exp Bot ; 72(8): 3320-3336, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544825

RESUMO

Phomopsis. longicolla is a hemibiotrophic fungus causing significant soybean yield loss worldwide. To reveal the role of zinc in plant-pathogen interactions, soybean seedlings were grown hydroponically with a range of Zn concentrations, 0.06 µM (deficient, Zn0), 0.4 µM (optimal growth), 1.5 µM, 4 µM, 12 µM, and toxic 38 µM, and were subsequently inoculated with P. longicolla via the roots. In vivo analysis of metal distribution in tissues by micro-X-ray fluorescence showed local Zn mobilization in the root maturation zone in all treatments. Decreased root and pod biomass, and photosynthetic performance in infected plants treated with 0.4 µM Zn were accompanied with accumulation of Zn, jasmonoyl-L-isoleucine (JA-Ile), jasmonic acid, and cell wall-bound syringic acid (cwSyA) in roots. Zn concentration in roots of infected plants treated with 1.5 µM Zn was seven-fold higher than in the 0.4 µM Zn treatment, which together with accumulation of JA-Ile, cwSyA, cell wall-bound vanilic acid and leaf jasmonates contributed to maintaining photosynthesis and pod biomass. Host-pathogen nutrient competition and phenolics accumulation limited the infection in Zn-deficient plants. The low infection rate in Zn 4 µM-treated roots correlated with salicylic and 4-hydroxybenzoic acid, and cell wall-bound p-coumaric acid accumulation. Zn toxicity promoted pathogen invasion and depleted cell wall-bound phenolics. The results show that manipulation of Zn availability improves soybean resistance to P. longicolla by stimulating phenolics biosynthesis and stress-inducible phytohormones.


Assuntos
Glycine max , Zinco , Phomopsis , Raízes de Plantas , Plântula
13.
Analyst ; 146(8): 2653-2663, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33661255

RESUMO

Phytohormones (plant hormones) are a group of small signalling molecules that act as important endogenous regulators in plant development and stress responses. Previous research has identified the phytohormone species, jasmonates, auxins and abscisic acid, and their related compounds in stressed leaf extracts. However, in situ visualisations of endogenous phytohormones from intact plant tissues remain elusive without the usage of labels or reporters. Mass spectrometry imaging is a label-free analytical technique that has been successfully applied for the direct detection of plant proteins, lipids, carbohydrates and many other biomolecules. In this study, desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) was used for high throughput visualisation and evaluation of wound-induced phytohormones inside Arabidopsis thaliana leaves. The results showed higher levels of jasmonates, salicylic acid, abscisic acid and indole-3-acetic acid in their ion intensity maps established from wounded leaves compared to control leaves, which have been validated in the parallel liquid chromatography-mass spectrometry quantification, and the untainted distributions of the identified phytohormones in leaves were confirmed by mass spectrometry imaging of instant leaf imprinted thin-layer chromatography plate samples. Further statistical analysis has not only demonstrated a significant increase of jasmonic acid and its precursor compounds in wounded leaves/regions but also highlighted a potential correlation in different phytohormone species. Our results suggest that DESI-MSI can be used to in situ characterise multiple phytohormone compounds from intact leaves with 200 µm spatial resolution to provide insight into phytohormone distributions in wounded leaves, along with their correlated precursors and metabolites under mechanical stress.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Ácido Abscísico , Folhas de Planta , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360759

RESUMO

Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia
15.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768948

RESUMO

The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 µmol m-2 s-1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and ß-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.


Assuntos
Fotossíntese , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos da radiação , Brassinosteroides/metabolismo , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Solanum lycopersicum/crescimento & desenvolvimento , Metaboloma , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Análise Espectral Raman
16.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502279

RESUMO

The endoplasmic reticulum (ER) is an extensive network of intracellular membranes. Its major functions include proteosynthesis, protein folding, post-transcriptional modification and sorting of proteins within the cell, and lipid anabolism. Moreover, several studies have suggested that it may be involved in regulating intracellular auxin homeostasis in plants by modulating its metabolism. Therefore, to study auxin metabolome in the ER, it is necessary to obtain a highly enriched (ideally, pure) ER fraction. Isolation of the ER is challenging because its biochemical properties are very similar to those of other cellular endomembranes. Most published protocols for ER isolation use density gradient ultracentrifugation, despite its suboptimal resolving power. Here we present an optimised protocol for ER isolation from Arabidopsis thaliana seedlings for the subsequent mass spectrometric determination of ER-specific auxin metabolite profiles. Auxin metabolite analysis revealed highly elevated levels of active auxin form (IAA) within the ER compared to whole plants. Moreover, samples prepared using our optimised isolation ER protocol are amenable to analysis using various "omics" technologies including analyses of both macromolecular and low molecular weight compounds from the same sample.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Indolacéticos/metabolismo , Metabolômica/métodos , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/metabolismo , Metaboloma , Células Vegetais , Proteômica/métodos , Plântula/citologia , Plântula/metabolismo
17.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830250

RESUMO

The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.


Assuntos
Arabidopsis/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Nicotiana/metabolismo , Células Vegetais/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Técnicas de Cultura de Células , Fracionamento Celular/instrumentação , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Centrifugação/métodos , Citometria de Fluxo , Homeostase/fisiologia , Indóis/farmacologia , Espectrometria de Massas , Células Vegetais/efeitos dos fármacos , Células Vegetais/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/química , Nicotiana/efeitos dos fármacos , Nicotiana/ultraestrutura
18.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502129

RESUMO

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan's molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Assuntos
Glucanos/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Xilanos/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Glucanos/química , Pisum sativum/fisiologia , Transdução de Sinais , Xilanos/química
19.
J Exp Bot ; 71(22): 7210-7223, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32930769

RESUMO

Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The photosystem II (PSII)-associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating light. We investigated how PSB33 knock-out Arabidopsis plants perform under different light qualities. psb33 plants displayed a reduction of 88% of total fresh weight compared to wild type plants when cultivated at the boundary of UV-A and blue light. The sensitivity towards UV-A light was associated with a lower abundance of PSII proteins, which reduces psb33 plants' capacity for photosynthesis. The UV-A phenotype was found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UV-A light-mediated mechanism to maintain a functional PSII pool in the chloroplast.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
20.
New Phytol ; 223(3): 1420-1432, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038751

RESUMO

distribution of auxin within plant tissues is of great importance for developmental plasticity, including root gravitropic growth. Auxin flow is directed by the subcellular polar distribution and dynamic relocalisation of auxin transporters such as the PIN-FORMED (PIN) efflux carriers, which can be influenced by the main natural plant auxin indole-3-acetic acid (IAA). Anthranilic acid (AA) is an important early precursor of IAA and previously published studies with AA analogues have suggested that AA may also regulate PIN localisation. Using Arabidopsis thaliana as a model species, we studied an AA-deficient mutant displaying agravitropic root growth, treated seedlings with AA and AA analogues and transformed lines to over-produce AA while inhibiting its conversion to downstream IAA precursors. We showed that AA rescues root gravitropic growth in the AA-deficient mutant at concentrations that do not rescue IAA levels. Overproduction of AA affects root gravitropism without affecting IAA levels. Treatments with, or deficiency in, AA result in defects in PIN polarity and gravistimulus-induced PIN relocalisation in root cells. Our results revealed a previously unknown role for AA in the regulation of PIN subcellular localisation and dynamics involved in root gravitropism, which is independent of its better known role in IAA biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polaridade Celular , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , ortoaminobenzoatos/metabolismo , Arabidopsis/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Ácidos Indolacéticos/química , Mutação/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Quinolonas/farmacologia , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA