RESUMO
Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by the nematode Howardula aoronymphium. The benefit of this defense strategy has led to the rapid spread of Spiroplasma throughout the range of D. neotestacea, although the molecular basis for this protection has been unresolved. Here, we show that Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea. First, we show that recombinant Spiroplasma RIP catalyzes depurination of 28S rRNAs in a cell-free assay, as well as Howardula rRNA in vitro at the canonical RIP target site within the α-sarcin/ricin loop (SRL) of 28S rRNA. We then show that Howardula parasites in Spiroplasma-infected flies show a strong signal of rRNA depurination consistent with RIP-dependent modification and large decreases in the proportion of 28S rRNA intact at the α-sarcin/ricin loop. Notably, host 28S rRNA is largely unaffected, suggesting targeted specificity. Collectively, our study identifies a novel RIP in an insect defensive symbiont and suggests an underlying RIP-dependent mechanism in Spiroplasma-mediated defense.
Assuntos
Drosophila/metabolismo , Drosophila/microbiologia , Proteínas Inativadoras de Ribossomos/metabolismo , Spiroplasma/fisiologia , Simbiose , Animais , Endorribonucleases/química , Proteínas Fúngicas/química , Reação em Cadeia da Polimerase , RNA Ribossômico 28S/metabolismo , Coelhos , Proteínas Recombinantes/isolamento & purificação , Ribossomos/metabolismo , Ricina/química , Análise de Sequência de RNARESUMO
BACKGROUND: S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE) in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. RESULTS: To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. CONCLUSIONS: Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct protein targets. Collectively, these data provide novel insight into the structural and functional consequences of the divergent surfaces between S100A7 and S100A15 that may be exploited for targeted therapies.
Assuntos
Receptores de Superfície Celular/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação , Complexo do Signalossomo COP9 , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Proteína A7 Ligante de Cálcio S100 , Propriedades de SuperfícieRESUMO
ABBREVIATIONS: CE-SDS: capillary electrophoresis sodium dodecyl sulfate; DSC: differential scanning calorimetry; FACS: fluorescence-activated cell sorting; FSA: full-sized antibody; Her2: human epidermal growth factor receptor 2; MFI: mean fluorescent intensity; OAA: one-armed antibody; PBS: phosphate-buffered saline; PDB: Protein Data Bank; SEC: size-exclusion chromatography; prepSEC (preparative SEC); RMSD: root-mean-square deviation; RU: resonance units; SPR: surface plasmon resonance; TAA: tumor-associated antigen; WT: wild-type.
Assuntos
Imunoglobulina A , Humanos , Cromatografia em GelRESUMO
Transmission-blocking vaccines are based on eliciting antibody responses in the vertebrate host that disrupt parasite development in the mosquito vector and prevent malaria transmission. The surface protein Pfs47 is present in Plasmodium falciparum gametocytes and female gametes. The potential of Pfs47 as a vaccine target was evaluated. Soluble full-length recombinant protein, consisting of three domains, was expressed in E. coli as a thioredoxin fusion (T-Pfs47). The protein was immunogenic, and polyclonal and monoclonal antibodies (mAb) were obtained, but they did not confer transmission blocking activity (TBA). All fourteen mAb targeted either domains 1 or 3, but not domain 2 (D2), and immune reactivity to D2 was also very low in polyclonal mouse IgG after T-Pfs47 immunization. Disruption of the predicted disulfide bond in D2, by replacing cysteines for alanines (C230A and C260A), allowed expression of recombinant D2 protein in E. coli. A combination of mAbs targeting D2, and deletion proteins from this domain, allowed us to map a central 52 amino acid (aa) region where antibody binding confers strong TBA (78-99%). This 52 aa antigen is immunogenic and well conserved, with only seven haplotypes world-wide that share 96-98% identity. Neither human complement nor the mosquito complement-like system are required for the observed TBA. A dramatic reduction in ookinete numbers and ookinete-specific transcripts was observed, suggesting that the antibodies are interacting with female gametocytes and preventing fertilization.
RESUMO
Plasmodium falciparum is an apicomplexan parasite and the etiological agent of severe human malaria. The complex P. falciparum life cycle is supported by a diverse repertoire of surface proteins including the family of 6-Cys s48/45 antigens. Of these, Pf41 is localized to the surface of the blood-stage merozoite through its interaction with the glycophosphatidylinositol-anchored Pf12. Our recent structural characterization of Pf12 revealed two juxtaposed 6-Cys domains (D1 and D2). Pf41, however, contains an additional segment of 120 residues predicted to form a large spacer separating its two 6-Cys domains. To gain insight into the assembly mechanism and overall architecture of the Pf12-Pf41 complex, we first determined the 2.45 Å resolution crystal structure of Pf41 using zinc single-wavelength anomalous dispersion. Structural analysis revealed an unexpected domain organization where the Pf41 6-Cys domains are, in fact, intimately associated and the additional residues instead map predominately to an inserted domain-like region (ID) located between two ß-strands in D1. Notably, the ID is largely proteolyzed in the final structure suggesting inherent flexibility. To assess the contribution of the ID to complex formation, we engineered a form of Pf41 where the ID was replaced by a short glycine-serine linker and showed by isothermal titration calorimetry that binding to Pf12 was abrogated. Finally, protease protection assays showed that the proteolytic susceptibility of the ID was significantly reduced in the complex, consistent with the Pf41 ID directly engaging Pf12. Collectively, these data establish the architectural organization of Pf41 and define an essential role for the Pf41 ID in promoting assembly of the Pf12-Pf41 heterodimeric complex.
Assuntos
Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Calorimetria , Cristalografia por Raios X , Estágios do Ciclo de Vida , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Proteólise , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tripsina/metabolismoRESUMO
We report here a peptide-driven approach to create first inhibitors of the chromobox homolog 7 (CBX7), a methyllysine reader protein. CBX7 uses its chromodomain to bind histone 3, lysine 27 trimethylated (H3K27me3), and this recognition event is implicated in silencing multiple tumor suppressors. Small trimethyllysine containing peptides were used as the basic scaffold from which potent ligands for disruption of CBX7-H3K27me3 complex were developed. Potency of ligands was determined by fluorescence polarization and/or isothermal titration calorimetry. Binding of one ligand was characterized in detail using 2D NMR and X-ray crystallography, revealing a structural motif unique among human CBX proteins. Inhibitors with a â¼200 nM potency for CBX7 binding and 10-fold/400-fold selectivity over related CBX8/CBX1 proteins were identified. These are the first reported inhibitors of any chromodomain.