Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339722

RESUMO

Cracks inside urban underground comprehensive pipe galleries are small and their characteristics are not obvious. Due to low lighting and large shadow areas, the differentiation between the cracks and background in an image is low. Most current semantic segmentation methods focus on overall segmentation and have a large perceptual range. However, for urban underground comprehensive pipe gallery crack segmentation tasks, it is difficult to pay attention to the detailed features of local edges to obtain accurate segmentation results. A Global Attention Segmentation Network (GA-SegNet) is proposed in this paper. The GA-SegNet is designed to perform semantic segmentation by incorporating global attention mechanisms. In order to perform precise pixel classification in the image, a residual separable convolution attention model is employed in an encoder to extract features at multiple scales. A global attention upsample model (GAM) is utilized in a decoder to enhance the connection between shallow-level features and deep abstract features, which could increase the attention of the network towards small cracks. By employing a balanced loss function, the contribution of crack pixels is increased while reducing the focus on background pixels in the overall loss. This approach aims to improve the segmentation accuracy of cracks. The comparative experimental results with other classic models show that the GA SegNet model proposed in this study has better segmentation performance and multiple evaluation indicators, and has advantages in segmentation accuracy and efficiency.

2.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430584

RESUMO

The velocity model is one of the main factors affecting the accuracy of microseismic event localization. This paper addresses the issue of the low accuracy of microseismic event localization in tunnels and, combined with active-source technology, proposes a "source-station" velocity model. The velocity model assumes that the velocity from the source to each station is different, and it can greatly improve the accuracy of the time-difference-of-arrival algorithm. At the same time, for the case of multiple active sources, the MLKNN algorithm was selected as the velocity model selection method through comparative testing. The results of numerical simulation and laboratory tests in the tunnel showed that the average location accuracy of the "source-station" velocity model was improved compared with that of the isotropic velocity and sectional velocity models, with numerical simulation experiments improving accuracy by 79.82% and 57.05% (from 13.28 m and 6.24 m to 2.68 m), and laboratory tests in the tunnel improving accuracy by 89.26% and 76.33% (from 6.61 m and 3.00 m to 0.71 m). The results of the experiments showed that the method proposed in this paper can effectively improve the location accuracy of microseismic events in tunnels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA