Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Anal Chem ; 96(18): 7212-7219, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38660946

RESUMO

Extracellular vesicles (EVs) are available in various biological fluids and have highly heterogeneous sizes, origins, contents, and functions. Rapid enrichment of high-purity EVs remains crucial for enhancing research on EVs in tumors. In this work, we present a magnetic nanoparticle-based microfluidic platform (ExoCPR) for on-chip isolation, purification, and mild recovery of EVs from cell culture supernatant and plasma within 29 min. The ExoCPR chip integrates bubble-driven micromixers and immiscible filtration assisted by surface tension (IFAST) technology. The bubble-driven micromixer enhances the mixing between immunomagnetic beads and EVs, eliminating the need for manual pipetting or off-chip oscillatory incubation. The high-purity EVs were obtained after passing through the immiscible phase interface where hydrophilic or hydrophobic impurities nonspecifically bound to SIMI were removed. The ExoCPR chip had a capture efficiency of 75.8% and a release efficiency of 62.7% for model EVs. We also demonstrated the powerful performance of the ExoCPR in isolating EVs from biological samples (>90% purity). This chip was further employed in clinical plasma samples and showed that the number of GPC3-positive EVs isolated from hepatocellular carcinoma patients was significantly higher than that of healthy individuals. This ExoCPR chip may provide a promising tool for EV-based liquid biopsy and other fundamental research.


Assuntos
Vesículas Extracelulares , Nanopartículas de Magnetita , Vesículas Extracelulares/química , Humanos , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip
2.
Anal Chem ; 95(7): 3569-3576, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36661256

RESUMO

Exosomes are important participants in numerous pathophysiological processes and hold promising application value in cancer diagnosis, monitoring, and prognosis. However, the small size (40-160 nm) and high heterogeneity of exosomes make it still challenging to enrich exosomes efficiently from the complex biological fluid microenvironment, which has largely restricted their downstream analysis and clinical application. In this work, we introduced a novel method for rapid isolation and mild release of exosomes from the cell culture supernatant. A Strep-tag II-based immunomagnetic isolation (SIMI) system was constructed by modifying the capture antibodies onto magnetic nanoparticles through specific and reversible recognition between Strep-Tactin and Strep-tag II. Due to their high affinity and binding selectivity, exosomes could be isolated within 38 min with an isolation efficiency of 82.5% and a release efficiency of 62%. Compared with the gold-standard ultracentrifugation, the SIMI system could harvest nearly 59% more exosomes from the 293 T cell culture medium with shorter isolation time and higher purity. In addition, cellular uptake assay indicated that exosomes released from magnetic nanoparticles could maintain their high biological activity. These superior characteristics show that this novel method is a fast, efficient, and nondestructive exosome isolation tool and thus could potentially be further utilized in various exosome-related applications, e.g., disease diagnosis and drug delivery.


Assuntos
Exossomos , Humanos , Exossomos/metabolismo , Separação Imunomagnética , Ultracentrifugação , Oligopeptídeos/metabolismo
3.
Analyst ; 148(13): 3065-3073, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37305953

RESUMO

Droplet-based dPCR offers many advantages over chip-based dPCR, such as lower processing cost, higher droplet density, higher throughput, while requiring less sample. However, the stochastic nature of droplet locations, uneven illuminations, and unclear droplet boundaries make automatic image analysis challenging. Most methods currently used to count a large amount of microdroplets rely on flow detection. Conventional machine vision algorithms cannot extract all information of the targets from complex backgrounds. Some two-stage methods, which first locate and then classify droplets according to their grayscale values, require high-quality imaging. In this study, we addressed these limitations by improving a one-stage deep learning algorithm named YOLOv5 and applying it to the detection task to realize one-stage detection. We introduced an attention mechanism module to increase the detection rate of small targets and used a new loss function to speed up the training process. Furthermore, we employed a network pruning method to facilitate the deployment of the model on mobile devices while preserving its performance. We validated the model with captured droplet-based dPCR images and found that the improved model accurately identified negative and positive droplets in complex backgrounds with an error rate of 0.65%. This method is characterized by its fast detection speed, high accuracy, and ability to be used on mobile devices or cloud platforms. Overall, the study presents a novel approach for detecting droplets in large-scale microdroplet images and provides a promising solution for accurate and efficient droplet counting in droplet-based dPCR.


Assuntos
Aprendizado Profundo , Reação em Cadeia da Polimerase/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
4.
Biochem Genet ; 61(3): 1097-1112, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36449151

RESUMO

Tuberculosis (TB) is a fatal infectious disease; however, the molecular mechanisms underlying the pathogenicity of TB remain elusive. The present study aims to identify potential biomarkers associated with Mycobacterium tuberculosis (M.tb) infection by using integrated bioinformatics and in vitro validation studies. GSE50050, GSE78706, and GSE108844 data from the gene expression omnibus (GEO) database were downloaded to identify differentially expressed genes (DEGs). The functions of DEGs were further subjected to gene ontology (GO) and KEGG pathway analysis. The hub genes from the DEGs were determined based on the protein-protein interaction (PPI) network analysis. Finally, the hub genes were experimentally validated using the in vitro functional studies. A total of 26 common DEGs were identified among GSE50050, GSE78706, and GSE108844. The functional enrichment analysis showed that the common DEGs were associated with cytokines response and TB pathways. The PPI network analysis identified nine hub genes. Further in vitro studies showed that nitric oxide synthase 2 (NOS2) was up-regulated in RAW264.7 cells upon lipopolysaccharides (LPS) stimulation, which was accompanied by increased inflammatory cytokines release. Furthermore, NOS2 was found to be a target of miR-493-5p, which was confirmed by luciferase reporter assay. NOS2 was repressed by miR-493-5p overexpression and was up-regulated after miR-493-5p inhibition in RAW264.7 cells. The rescue experiments showed that LPS-induced increase in the inflammatory cytokines of the RAW264.7 cells was significantly attenuated by NOS2 knockdown and miR-493-5p overexpression. Collectively, our results for the first time demonstrated that NOS2/miR-493-5p signaling pathway may potentially involve in the inflammatory response during bacterial infection such as M. tb infection.


Assuntos
MicroRNAs , Tuberculose , Animais , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Tuberculose/metabolismo
5.
Analyst ; 147(21): 4876-4887, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36155591

RESUMO

As the gold standard for nucleic acid detection, full-process polymerase chain reaction (PCR) analysis often falls into the dilemma of complex workflow, time-consuming, and high equipment costs. Therefore, we designed and optimized a DNA quantification microfluidic system by strategically integrating sample pretreatment and a smartphone-readable gradient plasmonic photothermal (GPPT) continuous-flow PCR (CF-PCR). Through preloading and sequential injection of immiscible extraction reagents, combined with magnetic bead (MB) manipulation, the microfluidic chip successfully purified and concentrated 100 µL of HBV-DNA spiked plasma into a 20-µL purified sample within 14 minutes. With a digital PCR platform, the optimized experiments showed that the DNA extraction efficiency can reach 69% at an immiscible reagent configuration ratio of 10 : 10 : 1 : 12 : 2 (sample : lysis/binding buffer : MB : silicone oil : eluent) and a flow rate of 25 µL min-1. For the first time, we used gold nanorod (AuNR)-doped PDMS to prepare a CF-PCR submodule for the amplification of a 40 µL PCR mixture. Due to the plasmonic photothermal effect of AuNRs and the gradient intensity of an expanded laser spot, the PCR thermal gradient was formed on a coin-sized area. The compact annular thermal-microfluidic layout, optimized DNA dye concentration, and chip transmittance synergistically enable a rarely reported smartphone-based fluorescence CF-PCR, greatly simplifying thermal control and detection setup. Prototype construction and validation experiments show that the microsystem can complete the sample-to-answer quantification of HBV-DNA with a dynamic linear range from 1.2 × 101 to 1.2 × 106 copies per µL in ∼37 minutes. This novel microfluidic solution effectively bridges the technical gap between the CF-PCR, sample pretreatment and result characterization, making the workflow standardized and rapid and requiring <15% of the commercial instrument cost. The simplicity, rapidity and low cost of this work make it promising for applications in decentralized laboratories and low-resource settings.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , DNA Viral/genética , Smartphone , Óleos de Silicone , Reação em Cadeia da Polimerase , Indicadores e Reagentes
6.
Analyst ; 146(5): 1559-1568, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33533355

RESUMO

Step emulsification (SE) devices coupled with parallel generation nozzles are widely used in the production of large-scale monodisperse droplets, especially for droplet-based digital polymerase chain reaction (ddPCR) analysis. Although current ddPCR systems based on the SE method can provide a fully enclosed ddPCR scheme, high demands on chip fabrication and system control will increase testing costs and reduce its flexibility in ddPCR analysis. In this study, a compact SE device, integrating a smart SE chip into a reaction tube, was developed to prepare large-scale water-in-fluorinated-oil droplets for ddPCR analysis. The SE chip contained dozens of droplet-generation nozzles. By adjusting the nozzle height of the SE chip, monodisperse droplets in a picolitre to nanolitre vloume could be prepared at a production rate of tens to hundreds of microlitres per minute. Subsequently, we utilized such an integrated SE device to prepare monodisperse droplets for ddPCR experiments. The volume of PCR reagent and the number of droplets could be flexibly adjusted according to the requirements of the ddPCR analysis. The quantitative results showed that emulsions prepared by the SE device could achieve ddPCR detection with high accuracy, good repeatability, and an adaptive dynamic range, which also demonstrated the robustness and reliability of such devices in the droplet preparation. Thus, this compact SE device provides an inexpensive, flexible, and simplified droplet preparation method for digital PCR quantitative analysis.


Assuntos
Técnicas Analíticas Microfluídicas , Emulsões , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
7.
Anal Chem ; 92(2): 2258-2265, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31841633

RESUMO

While advances in microfluidics have enabled rapid and highly integrated detection of nucleic acid targets, the detection sensitivity is still unsatisfactory in the current POC (point-of-care) detection systems, especially for low abundance samples. In this study, a chip that integrates rapid nucleic acid extraction based on IFAST (immiscible phase filtration assisted by surface tension) and digital isothermal detection was developed to achieve highly sensitive POC detection within 60 min. Based on the interface theory, the factors influencing the interface stability of the IFAST process were studied, and the IFAST nucleic acid extraction conditions were optimized to increase the nucleic acid extraction recovery rate to 75%. Spiral mixing channel and flow-focusing droplet generation structure were designed to achieve the mixing and sample partitioning by applying negative pressure. A portable microdroplet fluorescence detection device was developed based on smartphone imaging. Validation tests were carried out for quantification of low-abundance cfDNA and detection of mutations.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Ácidos Nucleicos/isolamento & purificação , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Ácidos Nucleicos/química , Ácidos Nucleicos/genética
8.
Blood Cells Mol Dis ; 82: 102417, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179410

RESUMO

OBJECTIVE: miR-194-5p and NEAT1 have been reported to be associated with multiple malignancies, but their roles in acute myeloid leukemia (AML) remains not fully understood. METHODS: Bone marrow samples were collected for monocyte separation. qRT-PCR assay was performed to investigate the expression patterns of NEAT1 and miR-194-5p in AML. CCK-8, soft agar colony formation, flow cytometry and transwell assays were employed to explore the biological functions of NEAT1 or miR-194-5p. Methylation PCR was performed to monitor the methylation of NEAT1. Luciferase reporter assay was subjected to verify the relationship between miR-194-5p and DNMT3A. Immunofluorescence and western blotting were performed to detect the alterations of protein expression. RESULTS: NEAT1 and miR-194-5p were both down-regulated in AML. Overexpression of either NEAT1 or miR-194-5p repressed proliferation, induced apoptosis and restrained migration and invasion of AML cells. There was a negative correlation between NEAT1 and DNMT3A in AML. Knockdown of DNMT3A dramatically decreased the methylation of NEAT1. Moreover, DNMT3A was identified as a downstream target of miR-194-5p. Furthermore, down-regulation of DNMT3A rescued the impacts on the malignant phenotypes of NEAT1 inhibition by miR-194-5p inhibitor. CONCLUSION: Altogether, down-regulation of NEAT1 mediated by miR-194-5p/DNMT3A axis promotes AML progression, which might provide therapeutic targets in AML treatment.


Assuntos
DNA (Citosina-5-)-Metiltransferases/biossíntese , Regulação para Baixo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Feminino , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Células THP-1
9.
J Cell Mol Med ; 23(8): 5642-5653, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31199066

RESUMO

This study aimed to examine miR-140 expression in clinical samples from tuberculosis (TB) patients and to explore the molecular mechanisms of miR-140 in host-bacterial interactions during Mycobacterium tuberculosis (M tb) infections. The miR-140 expression and relevant mRNA expression were detected by quantitative real-time PCR (qRT-PCR); the protein expression levels were analysed by ELISA and western blot; M tb survival was measured by colony formation unit assay; potential interactions between miR-140 and the 3' untranslated region (UTR) of tumour necrosis factor receptor-associated factor 6 (TRAF6) was confirmed by luciferase reporter assay. MiR-140 was up-regulated in the human peripheral blood mononuclear cells (PBMCs) from TB patients and in THP-1 and U937 cells with M tb infection. Overexpression of miR-140 promoted M tb survival; on the other hand, miR-140 knockdown attenuated M tb survival. The pro-inflammatory cytokines including interleukin 6, tumour necrosis-α, interleukin-1ß and interferon-γ were enhanced by M tb infection in THP-1 and U937 cells. MiR-140 overexpression reduced these pro-inflammatory cytokines levels in THP-1 and U937 cells with M tb infection; while knockdown of miR-140 exerted the opposite actions. TRAF6 was identified to be a downstream target of miR-140 and was negatively modulated by miR-140. TRAF6 overexpression increased the pro-inflammatory cytokines levels and partially restored the suppressive effects of miR-140 overexpression on pro-inflammatory cytokines levels in THP-1 and U937 cells with M tb infection. In conclusion, our results implied that miR-140 promoted M tb survival and reduced the pro-inflammatory cytokines levels in macrophages with M tb infection partially via modulating TRAF6 expression.


Assuntos
Inflamação/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , MicroRNAs/metabolismo , Mycobacterium tuberculosis/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Citocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , MicroRNAs/genética , Viabilidade Microbiana , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Células U937 , Regulação para Cima
10.
Analyst ; 144(14): 4162-4174, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31166335

RESUMO

Cell-free (cf) nucleic acids are considered important and have been used as selective biomarkers. Conventional techniques for cf nucleic acid biomarker isolation from blood are generally time-consuming, complicated, and expensive. This study describes a lab-on-a-disk system equipped with newly developed immiscible filtration assisted by surface tension (IFAST), which can achieve the rapid isolation of cfDNA from whole blood. The principle of centrifugal IFAST (C-IFAST) is introduced. An arch-like channel for magnetic bead transfer in the immiscible phase is designed, which builds both a virtual water-air "wall" and an air-oil "wall" to prevent the blending of water and oil. The entire process requires less than 15 min and achieves the recovery of 65% of cfDNA from plasma and 30% from whole blood. Experiments were performed to test the validity of the chip, showing that this technique takes less time to obtain results of identical quality compared to commercial kits. The proposed C-IFAST method enables rapid and reliable cfDNA isolation from large whole blood volume (4 ml) and can potentially be used in "liquid biopsy" point-of-care diagnosis.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Viral/sangue , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Biomarcadores/sangue , Filtração , Vírus da Hepatite B/genética , Humanos , Biópsia Líquida/métodos , Fenômenos Magnéticos , Técnicas Analíticas Microfluídicas/instrumentação , Reprodutibilidade dos Testes
11.
Sensors (Basel) ; 17(6)2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28555028

RESUMO

Uric acid (UA) is a kind of purine metabolism product and important in clinical diagnosis. In this work, we present a study of ZnS nanostructures-based electrochemical and photoelectrochemical biosensors for UA detection. Through a simple hydrothermal method and varying the ratio of reaction solvents, we obtained ZnS nanomaterials of one-dimensional to three-dimensional morphologies and they were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). To fabricate the UA biosensor and study the effect of material morphology on its performance, ZnS nanomaterials were deposited on indium tin oxide (ITO) conducting glass and then coated with uricase by physical absorption. Three kinds of working electrodes were characterized by cyclic voltammetry method. The effect of material morphology on performance of UA detection was investigated via amperometric response based electrochemical method based on enzymatic reaction. The ZnS urchin-like nanostructures electrode shows better sensitivity compared with those made of nanoparticles and nanoflakes because of its high surface-area-to-volume ratio. The photoelectrochemical method for detection of UA was also studied. The sensitivity was increased 5 times after irradiation of 300 nm UV light. These results indicate that ZnS nanostructures are good candidate materials for developing enzyme-based UA biosensors.


Assuntos
Nanoestruturas , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Ácido Úrico
12.
Sensors (Basel) ; 16(2): 210, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861343

RESUMO

For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

13.
Sensors (Basel) ; 15(11): 27954-68, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26556354

RESUMO

We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 106 copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics.

14.
Mater Horiz ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899460

RESUMO

All-solid-state ionic conductive elastomers (ASSICEs) are emerging as a promising alternative to hydrogels and ionogels in flexible electronics. Nevertheless, the synthesis of ASSICEs with concomitant mechanical robustness, superior ionic conductivity, and cost-effective recyclability poses a formidable challenge, primarily attributed to the inherent contradiction between mechanical strength and ionic conductivity. Herein, we present a collaborative design of high-entropy topological network and multivalent ion-dipole interaction for ASSICEs, and successfully mitigate the contradiction between mechanical robustness and ionic conductivity. Benefiting from the synergistic effect of this design, the coordination, de-coordination, and intrachain transfer of Li+ are effectively boomed. The resultant ASSICEs display exceptional mechanical robustness (breaking strength: 7.45 MPa, fracture elongation: 2621%, toughness: 107.19 MJ m-3) and impressive ionic conductivity (1.15 × 10-2 S m-1 at 25 °C). Furthermore, these ASSICEs exhibit excellent environmental stability (fracture elongation exceeding 1400% at 50 °C or -60 °C) and recyclability. Significantly, the application of these ASSICEs in a strain sensor highlights their potential in various fields, including human-interface communication, aerospace vacuum measurement, and medical balloon monitoring.

15.
Analyst ; 138(17): 4732-6, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23814782

RESUMO

We designed a novel aptamer based biosensor (aptasensor) for ultrasensitive detection of adenosine triphosphate (ATP) through resonance energy transfer (RET). The ATP aptamer was modified with Cy3 at the 3' end, and a green quantum dot (525) was attached to the 5' end of its complementary sequence respectively. The ATP aptamer and its complementary sequence could assemble into a duplex structure in the absence of target ATP, and then decrease the distance between the quantum dot and Cy3 which could produce significant RET signal. Upon ATP binding, the ATP aptamer could dissociate with its complementary sequence and then increase the distance between the quantum dot and Cy3 which would significantly decrease the RET signal. Therefore, the ATP detection could be easily achieved through detection of the fluorescence intensity ratio between 525 nm and 560 nm. The results show that the emission fluorescence intensity ratio of 525/560 is linearly related to the logarithmic concentration of ATP. The linear range of this aptasensor is from 0.1 nM to 1 µM, and the detection limit is lower down to 0.01 nM. Excellent selectivity of this aptasensor for ATP has been demonstrated through the detection of thymidine triphosphate (TTP), cytidine triphosphate (CTP), guanosine triphosphate (GTP) and adenosine diphosphate (ADP) respectively as control. The method we described here could easily detect ATP with excellent selectivity, linearity and sensitivity down to the nanomolar range, as well as avoid photobleaching.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/genética , Sequência de Bases
16.
Int J Biol Macromol ; 241: 124536, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085065

RESUMO

Hydrogel-based strain sensors have garnered significant attention for their potential for human health monitoring. However, its practical application has been hindered by water loss, freezing, and structural impairment during long-term motion monitoring. Here, a strain sensor based on double-network (DN) hydrogel of polyacrylamide (PAAm)/carboxymethylcellulose (CMC) was developed in a ternary solvent system of lithium chloride (LiCl)/ethylene glycol (EG)/H2O through a facile one-pot radical polymerization strategy. The incorporation of EG effectively mitigated the hydration of lithium salts by generating stable ion clusters with Li+ and stronger hydrogen bonds within the polymer matrix. The sensor demonstrated excellent mechanical properties, including a stretchability of 1858 %, toughness of 1.80 MJ/m3, and recoverability of 102 %. Furthermore, the LiCl/EG/H2O ternary system resulted in high conductivity, excellent anti-freezing performance, and superior sensing stability. In addition, the sensor exhibited remarkable sensitivity, enabling the monitoring of human movements ranging from subtle to significant deformations, including throat motion and bending of the elbow, wrist, finger, and lower limb. This study presents a viable approach for constructing hydrogel-based strain sensors with exceptional sensing stability for long-term tracking of human motions.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Humanos , Condutividade Elétrica , Ligação de Hidrogênio , Lítio , Cloreto de Lítio
17.
Lab Chip ; 23(23): 5039-5046, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909299

RESUMO

Flow cytometry is an essential technique in single particle analysis and cell sorting for further downstream diagnosis, exhibiting high-throughput and multiplexing capabilities for many biological and biomedical applications. Although many hydrodynamic focusing-based microfluidic cytometers have been demonstrated with reduced size and cost to adapt to point-of-care settings, the operating conditions are not characterized systematically. This study presents the flow transition process in the hydrodynamic focusing mechanism when the flow rate or the Reynolds number increases. The characteristics of flow fields and mass transport were studied under various operating conditions, including flow rates and microchannel heights. A transition from the squeezed focusing state to the over-squeezed anti-focusing state in the hydrodynamic focusing regime was observed when the Reynolds number increased above 30. Parametric studies illustrated that the focusing width increased with the Reynolds number but decreased with the microchannel height in the over-squeezed state. The microfluidic cytometric analyses using microbeads and E. coli show that the recovery rate was maintained by limiting the Reynolds number to 30. The detailed analysis of the flow transition will provide new insight into microfluidic cytometric analyses with a broad range of applications in food safety, water monitoring and healthcare sectors.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Escherichia coli , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/métodos , Citometria de Fluxo
18.
Biosens Bioelectron ; 202: 113994, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35042129

RESUMO

The pandemic due to the outbreak of 2019 coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised significant public health concerns. Rapid, affordable, and accurate diagnostic testing not only paves the way for the effective treatment of diseases, but also plays a crucial role in preventing the spreading of infectious diseases. Herein, a one-pot CRISPR/Cas13a-based visual biosensor was proposed and developed for the rapid and low-cost nucleic acid detection. By combining Cas13a cleavage and Recombinase Polymerase Amplification (RPA) in a one-pot reaction in a disposable tube-in-tube vessel, amplicon contamination could be completely avoided. The RPA reaction is carried out in the inner tube containing two hydrophobic holes at the bottom. After the completion of amplification reaction, the reaction solution enters the outer tube containing pre-stored Cas13a reagent under the action of centrifugation or shaking. Inner and outer tubes are combined to form an independent reaction pot to complete the nucleic acid detection without opening the lid. This newly developed nucleic acid detection method not only meets the need of rapid nucleic acid detection at home without the need for any specialized equipment, but also fulfils the requirement of rapid on-site nucleic acid detection with the aid of small automated instruments. In this study, CRISPR/Cas13a and CRISPR/Cas12a were used to verify the reliability of the developed one-pot nucleic acid detection method. The performance of the system was verified by detecting the DNA virus, i.e., African swine fever virus (ASFV) and the RNA virus, i.e., SARS-Cov-2. The results indicate that the proposed method possesses a limit of detection of 3 copy/µL. The negative and positive test results are consistent with the results of real-time fluorescence quantitative polymerase chain reaction (PCR), but the time required is shorter and the cost is lower. Thus, this study makes this method available in resource-limited areas for the purpose of large-scale screening and in case of epidemic outbreak.


Assuntos
Vírus da Febre Suína Africana , Técnicas Biossensoriais , COVID-19 , Ácidos Nucleicos , Animais , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade , Suínos
19.
Acta Biomater ; 139: 190-203, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33836222

RESUMO

Myocardial infarction (MI) remains the leading cause of death globally, often leading to impaired cardiac function and pathological myocardial microenvironment. Electrical conduction abnormalities of the infarcted myocardium not only induce adverse myocardial remodeling but also prevent tissue repair. Restoring the myocardial electrical integrity, particularly the anisotropic electrical signal propagation within the injured area after infarction is crucial for an effective function recovery. Herein, optimized reduced graphene oxide (rGO) functionalized electrospun silk fibroin (rGO/silk) biomaterials presenting anisotropic conductivity and enhanced suturablity were developed and investigated as cardiac patches for their potential in improving the post-MI myocardial function of rat models. The results show that the anisotropic conductive rGO/silk patches exhibit remarkable therapeutic effect on repairing the infarcted myocardium compared to the nonconductive silk and isotropic conductive rGO/silk patches as determined by the enhanced pumping function, reduced susceptibility to arrhythmias, thickened left ventricular walls and improved survival of functional cardiomyocytes. Their notable effect on promoting the angiogenesis of capillaries in the infarcted myocardium has also been demonstrated. This study highlights an effective and biomimetic reconstruction of the electrical myocardial microenvironment based on the anisotropic conductive rGO/silk biomaterials as a promising option for promoting the repair of infarcted myocardium. STATEMENT OF SIGNIFICANCE: The dysfunctional electrical microenvironment in the infarcted myocardium not only aggravates the adverse myocardial remodeling but also limits the effect of cardiac regenerative medicine. Although various conductive biomaterials have been employed to restore the electrical network in the infarcted myocardium in vivo, the anisotropic nature of the myocardial electrical microenvironment which enables directional electrical signal propagation were neglected. In this study, an anisotropic conductive rGO/silk biomaterial system is developed to improve the myocardial function post infarction by restoring the anisotropic electrical microenvironment in the infarcted myocardium. The promoted effects of anisotropic conductive grafts on repairing infarcted hearts are demonstrated with improved pumping function, cardiomyocyte survival, resistance to ventricular fibrillation, and angiogenesis of capillary network.


Assuntos
Grafite , Infarto do Miocárdio , Animais , Grafite/farmacologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Seda
20.
Life Sci ; 253: 117736, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360571

RESUMO

AIMS: Recently, studies indicated that inflammation could exacerbate the development of BC. Karyopherin α-2 (KPNA2) is a molecule which modulates nucleocytoplasmic transport and is involved in malignant cellular behavior and carcinogenesis. Our study aims to elucidate the role of KPNA2 in BC pathogenesis and explore the mechanism of KPNA2 in regulating inflammation-induced BC exacerbations. MAIN METHODS: We measured the expression of KPNA2 in BC cells. Through loss-of-function experiments, the functional role of KPNA2 in MCF-7 and MDA-MB-468 cells was evaluated. SK-BR-3 cells were treated with IL-6 as an inflammatory in vitro model of BC. ELISA determination exhibited the contents of cytokines. RANKL and leptomycin B treatments activated NF-κB signaling and inhibited the nuclear translocation of c-Myc, respectively. KEY FINDINGS: The results showed that KPNA2 was significantly up-regulated in BC and silencing KPNA2 inhibited the proliferation, migration and invasion of BC cells, while the cycle arrest was induced, via blocking NF-κB signaling and c-Myc nuclear translocation. IL-6 stimulated the secretions of IL-8 and IL-17 in BC cells, and elevated KPNA2 expression. However, KPNA2 knockdown suppressed the inflammatory responses and malignant progression of BC induced by IL-6. SIGNIFICANCE: In conclusion, our study illustrated that KPNA2 regulated BC development, as well as IL-6-induced inflammation and exacerbation, via NF-κB signaling and c-Myc nuclear translocation. This may provide a novel target for BC therapy.


Assuntos
Neoplasias da Mama/patologia , Inflamação/patologia , Interleucina-6/metabolismo , alfa Carioferinas/genética , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA