RESUMO
Double-crystal monochromators (DCMs) are one of the most critical optical devices in beamlines at synchrotron sources, directly affecting the quality of the beam energy and position. As the performance of synchrotron light sources continues to improve, higher demands are placed on the stability of DCMs. This paper proposes a novel adaptive vibration control method combining variational modal decomposition (VMD) and filter-x normalized least mean squares (FxNLMS), ensuring DCM stability under random engineering disturbance. Firstly, the sample entropy of the vibration signal is selected as the fitness function, and the number of modal components k and the penalty factor α are optimized by a genetic algorithm. Subsequently, the vibration signal is decomposed into band frequencies that do not overlap with each other. Eventually, each band signal is individually governed by the FxNLMS controller. Numerical results have demonstrated that the proposed adaptive vibration control method has high convergence accuracy and excellent vibration suppression performance. Furthermore, the effectiveness of the vibration control method has been verified with actual measured vibration signals of the DCM.
RESUMO
Near-infrared spectroscopy (NIRS) is a reliable, rapid, and non-destructive analytical method widely applied in as a number of fields such as agriculture, food, chemical and oil industry. In order to suit different applications, near-infrared spectrometers are now varied. Portable near-infrared spectrometers are needed for rapid on-site identification and analysis. Instruments of this kind are rugged, compact and easy to be transported. In this paper, the current states of portable near-infrared spectrometers are reviewed. Portable near-infrared spectrometers are built of different monochromator systems: filter, grating, Fourier-transform methods, acousto-optic tunable filter (AOTF) and a large number of new methods based on micro-electro-mechanical systems (MEMS). The first part focuses on working principles of different monochromator systems. Advantages and disadvantages of different systems are also briefly mentioned. Descriptions of each method are given in turn. Typical spectrometers of each kind are introduced, and some parameters of these instruments are listed. In the next part we discuss sampling adapters, display, power supply and some other parts, which are designed to make the spectrometer more portable and easier to use. In the end, the current states of portable near-infrared spectrometers are summarized. Future trends of development of portable near-infrared spectrometers in China and abroad are discussed.
Assuntos
Óptica e Fotônica , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Agricultura , ChinaRESUMO
High signal-to-noise ratio (SNR) of system is necessary to obtain accurate blood components in near infrared noninvasive biochemical analysis. In order to improve SNR of analytical system, high-efficiency double compound parabolic concentrator (DCPC) system was researched, which was aimed at increasing light utilization efficiency. Firstly, with the request of collection efficiency in near infrared noninvasive biochemical analysis, the characteristic of emergent rays through compound parabolic concentrator (CPC) was analyzed. Then the maximum focusing angle range of the first stage CPC was determined. Secondly, the light utilization efficiency of truncated type was compared with standard DCPC, thus the best structure parameters of DCPC system were optimized. Lastly, combined with optical parameters of skin tissue, calculations were operated when incident wavelength is 1 000 nm. The light utilization efficiency of DCPC system, CPC-focusing mirror system, and non-optical collecting system was calculated. The results show that the light utilization efficiency of the three optical systems is 1.46%, 0.84% and 0.26% respectively. So DCPC system enhances collecting ability for human diffuse reflection light, and helps improve SNR of noninvasive biochemical analysis system and overall analysis accuracy effectively.
Assuntos
Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Calibragem , Desenho de Equipamento , Humanos , Fenômenos Ópticos , Pele/irrigação sanguíneaRESUMO
In the early nineties of last century, great importance had been gradually attached to the potential of near-infrared spectroscopy (NIRS) in the human body noninvasive biochemical examination. However, the human body is extremely complex. Although research teams have made some achievements in experimental simulations and in-vitro analysis, there is still no substantive breakthrough in clinical application now. The present paper discusses the key problems which prevent NIRS from achieving human noninvasive clinical biochemical examination, such as weak signal, the interference of human tissue background and the problem of blood volume change. The thoughts of noninvasive biomedical examination using NIRS are divided into two categories in terms of analytical method, that is classical near-infrared analysis and issue background interference elimination analysis. This paper also introduces in detail the current status of the two categories in the world, and believes that the second category is more promising to be successful in clinical application under the existing conditions.
Assuntos
Diagnóstico por Imagem , Espectroscopia de Luz Próxima ao Infravermelho , HumanosRESUMO
The present paper proposed how to select characteristic near-infrared wavelength for soil total nitrogen by using successive projection algorithm (SPA). Spectral data are compressed by SPA in the first place to obtain the raw wavelengths. Then the group of wavelengths derived from SPA is screened by their contributions to the total nitrogen. The insensitive wavelengths for total nitrogen are eliminated, improving the parsimony of the calibration model. For the 85 soil samples in total nitrogen, SPA was used to select the raw wavelengths. After screening on contribution, the number of wavelengths dropped from 12 by direct SPA to 6. Finally, the calibration model using wavelengths selected by screening on contribution after SPA showed the correlation coefficient (R(p)) of 0.913 and the root mean square error of prediction (RMSEP) of 0.011%. This model is as precise as the one before screening on contribution, and more precise than the result derived from partial least square (PLS) for the whole spectrum. The results demonstrate that the number of wavelengths selected by SPA can be reduced without significantly compromising prediction performance using the screening on contribution. The 6 selected total nitrogen wavelengths in this paper can be a reference for designing smart filter NIR spectrometer.
RESUMO
To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA.
RESUMO
Sporocytophaga sp. JL-01 is a sliding cellulose degrading bacterium that can decompose filter paper (FP), carboxymethyl cellulose (CMC) and cellulose CF11. In this paper, the morphological characteristics of S. sp. JL-01 growing in FP liquid medium was studied by Scanning Electron Microscope (SEM), and one of the FPase components of this bacterium was analyzed. The results showed that the cell shapes were variable during the process of filter paper cellulose decomposition and the rod shape might be connected with filter paper decomposing. After incubating for 120 h, the filter paper was decomposed significantly, and it was degraded absolutely within 144 h. An FPase1 was purified from the supernatant and its characteristics were analyzed. The molecular weight of the FPase1 was 55 kDa. The optimum pH was pH 7.2 and optimum temperature was 50°C under experiment conditions. Zn(2+) and Co(2+) enhanced the enzyme activity, but Fe(3+) inhibited it.
Assuntos
Celulase/metabolismo , Celulose/metabolismo , Cytophagaceae/enzimologia , Cytophagaceae/ultraestrutura , Filtração , Papel , Proteínas de Bactérias/metabolismo , Carboximetilcelulose Sódica/metabolismo , Cytophagaceae/classificação , Cytophagaceae/isolamento & purificação , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microbiologia do Solo , Especificidade por Substrato , TemperaturaRESUMO
The Shanghai Synchrotron Radiation Facility (SSRF) is the first third-generation synchrotron facility in China and operated at an electron energy of 3.5 GeV. One of the seven beamlines in the first construction phase is devoted to soft x-ray spectromicroscopy and is equipped with an elliptically polarized undulator light source, a plane grating monochromator, and a scanning transmission x-ray microscope end station. Initial results reveal the high performance of this beamline, with an energy resolving power estimated to be over 10,000 at the argon L-edge and a spatial resolution better than 30 nm.