Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 103018, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796514

RESUMO

The endosymbiotic theory posits that ancient eukaryotic cells engulfed O2-consuming prokaryotes, which protected them against O2 toxicity. Previous studies have shown that cells lacking cytochrome c oxidase (COX), required for respiration, have increased DNA damage and reduced proliferation, which could be improved by reducing O2 exposure. With recently developed fluorescence lifetime microscopy-based probes demonstrating that the mitochondrion has lower [O2] than the cytosol, we hypothesized that the perinuclear distribution of mitochondria in cells may create a barrier for O2 to access the nuclear core, potentially affecting cellular physiology and maintaining genomic integrity. To test this hypothesis, we utilized myoglobin-mCherry fluorescence lifetime microscopy O2 sensors without subcellular targeting ("cytosol") or with targeting to the mitochondrion or nucleus for measuring their localized O2 homeostasis. Our results showed that, similar to the mitochondria, the nuclear [O2] was reduced by ∼20 to 40% compared with the cytosol under imposed O2 levels of ∼0.5 to 18.6%. Pharmacologically inhibiting respiration increased nuclear O2 levels, and reconstituting O2 consumption by COX reversed this increase. Similarly, genetic disruption of respiration by deleting SCO2, a gene essential for COX assembly, or restoring COX activity in SCO2-/- cells by transducing with SCO2 cDNA replicated these changes in nuclear O2 levels. The results were further supported by the expression of genes known to be affected by cellular O2 availability. Our study reveals the potential for dynamic regulation of nuclear O2 levels by mitochondrial respiratory activity, which in turn could affect oxidative stress and cellular processes such as neurodegeneration and aging.


Assuntos
Mitocôndrias , Oxigênio , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Respiração , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Núcleo Celular/metabolismo , Consumo de Oxigênio , Respiração Celular
2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293452

RESUMO

Computational modeling can provide a mechanistic and quantitative framework for describing intracellular spatial heterogeneity of solutes such as oxygen partial pressure (pO2). This study develops and evaluates a finite-element model of oxygen-consuming mitochondrial bioenergetics using the COMSOL Multiphysics program. The model derives steady-state oxygen (O2) distributions from Fickian diffusion and Michaelis-Menten consumption kinetics in the mitochondria and cytoplasm. Intrinsic model parameters such as diffusivity and maximum consumption rate were estimated from previously published values for isolated and intact mitochondria. The model was compared with experimental data collected for the intracellular and mitochondrial pO2 levels in human cervical cancer cells (HeLa) in different respiratory states and under different levels of imposed pO2. Experimental pO2 gradients were measured using lifetime imaging of a Förster resonance energy transfer (FRET)-based O2 sensor, Myoglobin-mCherry, which offers in situ real-time and noninvasive measurements of subcellular pO2 in living cells. On the basis of these results, the model qualitatively predicted (1) the integrated experimental data from mitochondria under diverse experimental conditions, and (2) the impact of changes in one or more mitochondrial processes on overall bioenergetics.


Assuntos
Consumo de Oxigênio , Oxigênio , Humanos , Mioglobina/metabolismo , Simulação por Computador , Metabolismo Energético
3.
Biochim Biophys Acta ; 1853(10 Pt A): 2411-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164626

RESUMO

Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems.


Assuntos
Células Epiteliais/metabolismo , Pulmão/metabolismo , Nanopartículas , Poliestirenos , Linhagem Celular Tumoral , Células Epiteliais/citologia , Humanos , Pulmão/citologia , Análise Espectral
4.
Biochim Biophys Acta ; 1843(5): 855-65, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24480461

RESUMO

PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored.


Assuntos
Neoplasias Pulmonares/metabolismo , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/farmacocinética , Povidona/farmacocinética , Análise Espectral/métodos , Antracenos , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Perileno/farmacocinética
5.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37781589

RESUMO

Molecular oxygen (O 2 ) is one of the most functionally relevant metabolites. O 2 is essential for mito-chondrial aerobic respiration. Changes in O 2 affect muscle metabolism and play a critical role in the maintenance of skeletal muscle mass, with lack of sufficient O 2 resulting in detrimental loss of muscle mass and function. How exactly O 2 is used by muscle cells is less known, mainly due to the lack of tools to address O 2 dynamics at the cellular level. Here we discuss a new imaging method for the real time quantification of intracellular O 2 in muscle cells based on a genetically encoded O 2 -responsive sensor, Myoglobin-mCherry. We show that we can spatially resolve and quantify intracellular O 2 concentration in single muscle cells and that the spatiotemporal O 2 gradient measured by the sensor is linked to, and reflects, functional metabolic changes occurring during the process of muscle differentiation. Highlights: Real time quantitation of intracellular oxygen with spatial resolutionIdentification of metabolically active sites in single cellsOxygen metabolism is linked to muscle differentiation.

6.
J Microsc ; 245(1): 100-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21974829

RESUMO

During fluorescent live cell imaging it is critical to keep excitation light dose as low as possible, especially in the presence of photosensitizer drugs, which generate free radicals upon photobleaching. During fluorescent imaging, stress by excitation and free radicals induces serious cell damages that may arrest the cell cycle. This limits the usefulness of the technique for drug discovery, when prolonged live cell imaging is necessary. This paper presents a strategy to provide gentle experimental conditions for dynamic monitoring of the proliferation of human lung epithelial carcinoma cells (A549) in the presence of the photosensitizer Polyvinylpyrrolidone-Hypericin. The distinctive strategy of this paper is based on the stringent environmental control and optimizing the excitation light dose by (i) using a low-power pulsed blue light-emitting diode with short pulse duration of 1.29 ms and (ii) adding a nontoxic fluorescent dye called carboxyfluorescein-diacetate-succinimidyl-ester (CFSE) to improve the fluorescence signals. To demonstrate the usefulness of the strategy, fluorescence signals and proliferation of dual-marked cells, during 5-h fluorescence imaging under pulsed excitation, were compared with those kept under continuous excitation and nonmarked reference cells. The results demonstrated 3% cell division and 2% apoptosis due to pulsed excitation compared to no division and 85% apoptosis under the continuous irradiation. Therefore, our strategy allows live cell imaging to be performed over longer time scales than with conventional continuous excitation.


Assuntos
Proliferação de Células , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Corantes Fluorescentes/toxicidade , Microscopia de Fluorescência/métodos , Perileno/análogos & derivados , Coloração e Rotulagem/métodos , Antracenos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Iluminação/métodos , Perileno/toxicidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-35463920

RESUMO

Myoglobin is a protein that is expressed quite unevenly among different cell types. Nevertheless, it has been widely acknowledged that the Fe3+ state of myoglobin, metmyoglobin (metMb) has a broad functional role in metabolism, oxidative/nitrative regulation and gene networks. Accordingly, real-time monitoring of oxygenated, deoxygenated and metMb proportions- or, more broadly, of the mechanisms by which metMb is formed, presents a promising line of research. We had previously introduced a Förster resonance energy transfer (FRET) method to read out the deoxygenation/oxygenation states of myoglobin, by creating the targetable oxygen (O2) sensor Myoglobin-mCherry. In this sensor, changes in myoglobin absorbance features that occur with lost O2 occupancy -or upon metMb production- control the FRET rate from the fluorescent protein to myoglobin. When O2 is bound, mCherry fluorescence is only slightly quenched, but if either O2 is released or met is produced, FRET will increase- and this rate competing with emission reduces both emission yield and lifetime. Nitric oxide (NO) is an important signal (but also a toxic molecule) that can oxidize myoglobin to metMb with absorbance increases in the red visible range. mCherry thus senses both met and deoxygenated myoglobin, which cannot be easily separated at hypoxia. In order to dissect this, we treat cells with NO and investigate how the Myoglobin-mCherry lifetime is affected by generating metMb. More discriminatory power is then achieved when the fluorescent protein EYFP is added to Myoglobin-mCherry, creating a sandwich probe whose lifetime can selectively respond to metMb while being indifferent to O2 occupancy.

8.
FEBS J ; 289(22): 6959-6968, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34235856

RESUMO

Molecular oxygen possesses a dual nature due to its highly reactive free radical property: it is capable of oxidizing metabolic substrates to generate cellular energy, but can also serve as a substrate for genotoxic reactive oxygen species generation. As a labile substance upon which aerobic life depends, the mechanisms for handling cellular oxygen have been fine-tuned and orchestrated in evolution. Protection from atmospheric oxygen toxicity as originally posited by the Endosymbiotic Theory of the Mitochondrion is likely to be one basic principle underlying oxygen homeostasis. We briefly review the literature on oxygen homeostasis both in vitro and in vivo with a focus on the role of the mitochondrion where the majority of cellular oxygen is consumed. The insights gleaned from these basic mechanisms are likely to be important for understanding disease pathogenesis and developing strategies for maintaining health.


Assuntos
Mitocôndrias , Oxigênio , Mitocôndrias/metabolismo , Radicais Livres/metabolismo , Oxigênio/metabolismo , Homeostase , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
9.
J Biophotonics ; 15(3): e202100166, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34689421

RESUMO

The biological relevance of nitric oxide (NO) and reactive oxygen species (ROS) in signaling, metabolic regulation, and disease treatment has become abundantly clear. The dramatic change in NO/ROS processing that accompanies a changing oxygen landscape calls for new imaging tools that can provide cellular details about both [O2 ] and the production of reactive species. Myoglobin oxidation to the met state by NO/ROS is a known sensor with absorbance changes in the visible range. We previously employed Förster resonance energy transfer to read out the deoxygenation/oxygenation of myoglobin, creating the subcellular [O2 ] sensor Myoglobin-mCherry. We now add the fluorescent protein EYFP to this sensor to create a novel probe that senses both met formation, a proxy for ROS/NO exposure, and [O2 ]. Since both proteins are present in the construct, it can also relieve users from the need to measure fluorescence lifetime, making [O2 ] sensing available to a wider group of laboratories.


Assuntos
Metamioglobina , Mioglobina , Transferência Ressonante de Energia de Fluorescência , Metamioglobina/metabolismo , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Oxigênio/metabolismo , Espécies Reativas de Oxigênio
10.
Methods Mol Biol ; 2304: 315-337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028725

RESUMO

Oxygen (O2) is a critical metabolite for cellular function as it fuels aerobic cellular metabolism; further, it is a known regulator of gene expression. Monitoring oxygenation within cells and organelles can provide valuable insights into how O2, or lack thereof, both influences and responds to cell processes. In recent years, fluorescence lifetime imaging microscopy (FLIM) has been used to track several probe concentration independent intracellular phenomena, such as pH, viscosity, and, in conjunction with Förster resonance energy transfer (FRET), protein-protein interactions. Here, we describe methods for synthesizing and expressing the novel FLIM-FRET intracellular O2 probe Myoglobin-mCherry (Myo-mCherry) in cultured cell lines, as well as acquiring FLIM images using a laser scanning confocal microscope configured for two-photon excitation and a time-correlated single photon counting (TCSPC) module. Finally, we provide step-by-step protocols for FLIM analysis of Myo-mCherry using the commercial software SPCImage and conversion of fluorescence lifetime values in each pixel to apparent intracellular oxygen partial pressures (pO2).


Assuntos
Proteínas Luminescentes/metabolismo , Mioglobina/metabolismo , Oxigênio/análise , Transferência Ressonante de Energia de Fluorescência , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Proteínas Luminescentes/química , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Moleculares , Mioglobina/química , Proteínas Recombinantes/metabolismo , Software , Proteína Vermelha Fluorescente
11.
Phys Med Biol ; 65(3): 03LT01, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31751964

RESUMO

Photodynamic therapy (PDT) that employs the photochemical interaction of light, photosensitizer and oxygen is an established modality for the treatment of cancer. However, dosimetry for PDT is becoming increasingly complex due to the heterogeneous photosensitizer uptake by the tumor, and complicated relationship between the tissue oxygenation ([3O2]), interstitial light distribution, photosensitizer photobleaching and PDT effect. As a result, experts argue that the failure to realize PDT's true potential is, at least partly due to the complexity of the dosimetry problem. In this study, we examine the efficacy of singlet oxygen explicit dosimetry (SOED) based on the measurements of the interstitial light fluence rate distribution, changes of [3O2] and photosensitizer concentration during Photofrin-mediated PDT to predict long-term control rates of radiation-induced fibrosarcoma tumors. We further show how variation in tissue [3O2] between animals induces variation in the treatment response for the same PDT protocol. PDT was performed with 5 mg kg-1 Photofrin (a drug-light interval of 24 h), in-air fluence rates (ϕ air) of 50 and 75 mW cm-2 and in-air fluences from 225 to 540 J cm-2. The tumor regrowth was tracked for 90 d after the treatment and Kaplan-Meier analyses for local control rate were performed based on a tumor volume ⩽100 mm3 for the two dosimetry quantities of PDT dose and SOED. Based on the results, SOED allowed for reduced subject variation and improved treatment evaluation as compared to the PDT dose.


Assuntos
Éter de Diematoporfirina/uso terapêutico , Fibrossarcoma/tratamento farmacológico , Neoplasias Induzidas por Radiação/tratamento farmacológico , Oxigênio/análise , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete/análise , Animais , Feminino , Fibrossarcoma/patologia , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Induzidas por Radiação/patologia , Fotodegradação , Radiometria/métodos
12.
Redox Biol ; 34: 101549, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32403080

RESUMO

Oxidation-reduction chemistry is fundamental to the metabolism of all living organisms, and hence quantifying the principal redox players is important for a comprehensive understanding of cell metabolism in normal and pathological states. In mammalian cells, this is accomplished by measuring oxygen partial pressure (pO2) in parallel with free and enzyme-bound reduced nicotinamide adenine dinucleotide (phosphate) [H] (NAD(P)H) and flavin adenine dinucleotide (FAD, a proxy for NAD+). Previous optical methods for these measurements had accompanying problems of cytotoxicity, slow speed, population averaging, and inability to measure all redox parameters simultaneously. Herein we present a Förster resonance energy transfer (FRET)-based oxygen sensor, Myoglobin-mCherry, compatible with fluorescence lifetime imaging (FLIM)-based measurement of nicotinamide coenzyme state. This offers a contemporaneous reading of metabolic activity through real-time, non-invasive, cell-by-cell intracellular pO2 and coenzyme status monitoring in living cells. Additionally, this method reveals intracellular spatial heterogeneity and cell-to-cell variation in oxygenation and coenzyme states.


Assuntos
Flavina-Adenina Dinucleotídeo , Imagem Óptica , Animais , Flavina-Adenina Dinucleotídeo/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredução
13.
J Pharm Pharmacol ; 71(1): 104-116, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28722126

RESUMO

OBJECTIVES: In this study, we investigate in human cervical epithelial HeLa cells the intracellular dynamics and the mutual interaction with the organelles of the poly-l-lactic acid nanoparticles (PLLA NPs) carrying the naturally occurring hydrophobic photosensitizer hypericin. METHODS: Temporal and spatiotemporal image correlation spectroscopy was used for the assessment of the intracellular diffusion and directed motion of the nanocarriers by tracking the hypericin fluorescence. Using image cross-correlation spectroscopy and specific fluorescent labelling of endosomes, lysosomes and mitochondria, the NPs dynamics in association with the cell organelles was studied. Static colocalization experiments were interpreted according to the Manders' overlap coefficient. KEY FINDINGS: Nanoparticles associate with a small fraction of the whole-organelle population. The organelles moving with NPs exhibit higher directed motion compared to those moving without them. The rate of the directed motion drops substantially after the application of nocodazole. The random component of the organelle motions is not influenced by the NPs. CONCLUSIONS: Image correlation and cross-correlation spectroscopy are most appropriate to unravel the motion of the PLLA nanocarrier and to demonstrate that the rate of the directed motion of organelles is influenced by their interaction with the nanocarriers. Not all PLLA-hypericin NPs are associated with organelles.


Assuntos
Nanopartículas , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/administração & dosagem , Poliésteres/química , Antracenos , Difusão , Portadores de Fármacos/química , Endossomos/metabolismo , Fluorescência , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Organelas/metabolismo , Perileno/administração & dosagem , Perileno/química , Perileno/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Análise Espectral
14.
Artigo em Inglês | MEDLINE | ID: mdl-35046616

RESUMO

Molecular oxygen is an important reporter of metabolic and physiological status at the cellular and tissue level and its concentration is used for the evaluation of many diseases (e.g.: cancer, coronary artery disease). The development of accurate and quantitative methods to measure O2 concentration ([O2]) in living cells, tissues and organisms is challenging and is subject of intense research. We developed a protein-based, fluorescent oxygen sensor that can be expressed directly in cells to monitor [O2] in the intracellular environment. We fused Myoglobin (Myo), a physiological oxygen carrier, with mCherry, a fluorescent protein, to build a fluorescence resonance energy transfer (FRET) pair, Myo-mCherry. The changes in the spectral properties of Myoglobin upon oxygen binding result in changes of the FRET-depleted emission intensity of mCherry, and this effect is detected by monitoring the fluorescence lifetime of the probe. We present here the preparation and characterization of a series of Myo-mCherry variants and mutants that show the versatility of our protein-based approach: the dynamic range of the sensor is tunable and adaptable to different [O2] ranges, as they occur in vitro in different cell lines, the probe is also easily targeted to subcellular compartments. The use of fluorescence overcomes the most common issues of data collection speed and spatial resolution encountered by currently available methods for O2-monitoring. By using Fluorescence Lifetime Imaging Microscopy (FLIM), we show that we can map the oxygenation level of cells in vitro, providing a quantitative assessment of [O2].

15.
Artigo em Inglês | MEDLINE | ID: mdl-35125610

RESUMO

The extraction of fluorophore lifetimes in a biological sample provides useful information about the probe environment that is not readily available from fluorescence intensity alone. Cell membrane potential, pH, concentration of oxygen ([O2]), calcium ([Ca2+]), NADH and other ions and metabolites are all regularly measured by lifetime-based techniques. These measurements provide invaluable knowledge about cell homeostasis, metabolism and communication with the cell environment. Fluorescence lifetime imaging microscopy (FLIM) produces spatial maps with time-correlated single-photon counting (TCSPC) histograms collected and analyzed at each pixel, but traditional TCSPC analysis is often hampered by the low number of photons that can reasonably be collected while maintaining high spatial resolution. More important, traditional analysis fails to employ the spatial linkages within the image. Here, we present a different approach, where we work under the assumption that mixtures of a global set of lifetimes (often only 2 or 3) can describe the entire image. We determine these lifetime components by globally fitting precise decays aggregated over large spatial regions of interest, and then we perform a pixel-by-pixel calculation of decay amplitudes (via simple linear algebra applied to coarser time-windows). This yields accurate amplitude images (Decay Associate Images, DAI) that contain stoichiometric information about the underlying mixtures while retaining single pixel resolution. We collected FLIM data of dye mixtures and bacteria expressing fluorescent proteins with a two-photon microscope system equipped with a commercial single-photon counting card, and we used these data to benchmark the gDAI program.

16.
J Biomed Opt ; 23(10): 1-14, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30298706

RESUMO

Oxygen (O2) is one of the most important biometabolites. In abundance, it serves as the limiting terminus of aerobic respiratory chains in the mitochondria of higher organisms; in deficit, it is a potent determinant of development and regulation of other physiological and therapeutic processes. Most knowledge on intracellular and interstitial concentration ([O2]) is derived from mitochondria isolated from cells or tissue biopsies, providing detailed but nonnative insight into respiratory chain function. The possible loss of essential metabolites during isolation and disruption of the normal interactions of the organelle with the cytoskeleton may cause these data to misrepresent intact cells. Several optical methodologies were also developed, but they are often unable to detect heterogeneity of metabolic characteristics among different individual cells in the same culture, and most cannot detect heterogeneous consumption within different areas of a single cell. Here, we propose a noninvasive and highly sensitive fluorescence lifetime microscopy probe, myoglobin-mCherry, appropriate to intracellular targeting. Using our probe, we monitor mitochondrial contributions to O2 consumption in A549 nonsmall cell lung cancer cells and we reveal heterogeneous [O2] within the intracellular environments. The mitochondrial [O2] at a single-cell level is also mapped by adding a peptide to target the probe to the mitochondria.


Assuntos
Corantes Fluorescentes/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Mioglobina/metabolismo , Oxigênio/análise , Células A549 , Corantes Fluorescentes/análise , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Mitocôndrias/química , Mitocôndrias/metabolismo , Mioglobina/genética , Oxigênio/química , Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Proteína Vermelha Fluorescente
17.
Med Phys ; 44(7): 3767-3775, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28426148

RESUMO

PURPOSE: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. As accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery is studied on its impact on the delivered light fluence. In this study, a three-dimensional finite element-based (3D FEM) deformable image registration is proposed to directly match the volume of lung to the volume of pleural cavity obtained during PDT to have accurate representation of the light fluence accumulated in the lung, heart and liver (organs-at-risk) during treatment. METHODS: A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the treatment light. The position of the treatment is tracked using an optical tracking system with an attachment comprised of nine reflective passive markers that are seen by an infrared camera-based navigation system. This information is used to obtain the surface contours of the plural cavity and the cumulative light fluence on every point of the cavity surface that is being treated. The lung, heart, and liver geometry are also reconstructed from a series of computed tomography (CT) scans of the organs acquired in the same patient before and after the surgery. The contours obtained with the optical tracking system and CTs are imported into COMSOL Multiphysics, where the 3D FEM-based deformable image registration is obtained. The delivered fluence values are assigned to the respective positions (x, y, and z) on the optical tracking contour. The optical tracking contour is considered as the reference, and the CT contours are used as the target, which will be deformed. The data from three patients formed the basis for this study. RESULTS: The physical correspondence between the CT and optical tracking geometries, taken at different times, from different imaging devices was established using the 3D FEM-based image deformable registration. The volume of lung was matched to the volume of pleural cavity and the distribution of light fluence on the surface of the heart, liver and deformed lung volumes was obtained. CONCLUSION: The method used is appropriate for analyzing problems over complicated domains, such as when the domain changes (as in a solid-state reaction with a moving boundary), when the desired precision varies over the entire domain, or when the solution lacks smoothness. Implementing this method in real-time for clinical applications and in situ monitoring of the under- or over- exposed regions to light during PDT can significantly improve the treatment for mesothelioma.


Assuntos
Mesotelioma/radioterapia , Fotoquimioterapia , Cavidade Pleural , Algoritmos , Humanos , Imageamento Tridimensional , Mesotelioma/diagnóstico por imagem , Tomografia Computadorizada por Raios X
18.
J Biomed Opt ; 22(2): 28002, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28301655

RESUMO

Existing dosimetric quantities do not fully account for the dynamic interactions between the key components of photodynamic therapy (PDT) or the varying PDT oxygen consumption rates for different fluence rates. Using a macroscopic model, reacted singlet oxygen ( [ O 2 1 ] rx ) was calculated and evaluated for its effectiveness as a dosimetric metric for PDT outcome. Mice bearing radiation-induced fibrosarcoma tumors were treated with benzoporphyrin derivative monoacid ring A (BPD) at a drug-light interval of 3 h with various in-air fluences (30 to 350 ?? J / cm 2 ) and in-air fluence rates (50 to 150 ?? mW / cm 2 ). Explicit measurements of BPD concentration and tissue optical properties were performed and used to calculate [ O 2 1 ] rx , photobleaching ratio, and PDT dose. For four mice, in situ measurements of O 2


Assuntos
Fibrossarcoma/terapia , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Oxigênio Singlete/análise , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Resultado do Tratamento , Verteporfina
19.
J Biophotonics ; 10(3): 473-474, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28371466

RESUMO

In the article by R. Penjweini, M. M. Kim et al. (doi: 10.1002/jbio.201600121), published in J. Biophotonics 9, 1344-1354 (2016), the constants C01 , C02 , b1 , and b2 determined from fitting the fluorescence single value decomposition (SVD) for phantoms with different optical properties and the corresponding Figure 2(a) are not correct. This erratum is published to correct the Section 2.3 and Figure 2(a).

20.
Proc SPIE Int Soc Opt Eng ; 100472017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28690354

RESUMO

Uniform delivery of light fluence is an important goal for photodynamic therapy. We present summary results for an infrared (IR) navigation system to deliver light dose uniformly during intracavitory PDT by tracking the movement of the light source and providing real-time feedback on the light fluence rate on the entire cavity surface area. In the current intrapleural PDT protocol, 8 detectors placed in selected locations in the pleural cavity monitor the light doses. To improve the delivery of light dose uniformity, an IR camera system is used to track the motion of the light source as well as the surface contour of the pleural cavity. A MATLAB-based GUI program is developed to display the light dose in real-time during PDT to guide the PDT treatment delivery to improve the uniformity of the light dose. A dualcorrection algorithm is used to improve the agreement between calculations and in-situ measurements. A comprehensive analysis of the distribution of light fluence during PDT is presented in both phantom conditions and in clinical cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA