Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8018): 912-919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867041

RESUMO

The ancient city of Chichén Itzá in Yucatán, Mexico, was one of the largest and most influential Maya settlements during the Late and Terminal Classic periods (AD 600-1000) and it remains one of the most intensively studied archaeological sites in Mesoamerica1-4. However, many questions about the social and cultural use of its ceremonial spaces, as well as its population's genetic ties to other Mesoamerican groups, remain unanswered2. Here we present genome-wide data obtained from 64 subadult individuals dating to around AD 500-900 that were found in a subterranean mass burial near the Sacred Cenote (sinkhole) in the ceremonial centre of Chichén Itzá. Genetic analyses showed that all analysed individuals were male and several individuals were closely related, including two pairs of monozygotic twins. Twins feature prominently in Mayan and broader Mesoamerican mythology, where they embody qualities of duality among deities and heroes5, but until now they had not been identified in ancient Mayan mortuary contexts. Genetic comparison to present-day people in the region shows genetic continuity with the ancient inhabitants of Chichén Itzá, except at certain genetic loci related to human immunity, including the human leukocyte antigen complex, suggesting signals of adaptation due to infectious diseases introduced to the region during the colonial period.


Assuntos
Comportamento Ritualístico , DNA Antigo , Genoma Humano , Humanos , México , Genoma Humano/genética , Masculino , DNA Antigo/análise , História Antiga , Feminino , Sepultamento/história , Arqueologia , Gêmeos/genética , História Medieval
2.
Epidemiol Infect ; 152: e85, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736255

RESUMO

Until the early twentieth century, populations on many Pacific Islands had never experienced measles. As travel to the Pacific Islands by Europeans became more common, the arrival of measles and other pathogens had devastating consequences. In 1911, Rotuma in Fiji was hit by a measles epidemic, which killed 13% of the island population. Detailed records show two mortality peaks, with individuals reported as dying solely from measles in the first and from measles and diarrhoea in the second. Measles is known to disrupt immune system function. Here, we investigate whether the pattern of mortality on Rotuma in 1911 was a consequence of the immunosuppressive effects of measles. We use a compartmental model to simulate measles infection and immunosuppression. Whilst immunosuppressed, we assume that individuals are vulnerable to dysfunctional reactions triggered by either (i) a newly introduced infectious agent arriving at the same time as measles or (ii) microbes already present in the population in a pre-existing equilibrium state. We show that both forms of the immunosuppression model provide a plausible fit to the data and that the inclusion of immunosuppression in the model leads to more realistic estimates of measles epidemiological parameters than when immunosuppression is not included.


Assuntos
Surtos de Doenças , Sarampo , Sarampo/mortalidade , Sarampo/epidemiologia , Sarampo/história , Humanos , Surtos de Doenças/história , Criança , Lactente , Pré-Escolar , Adolescente , Fiji/epidemiologia , História do Século XX , Masculino , Adulto , Adulto Jovem , Feminino , Pessoa de Meia-Idade , Terapia de Imunossupressão
3.
PLoS Comput Biol ; 17(1): e1008619, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481773

RESUMO

Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered to close on 20th March, followed by a "stay at home" order on the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Government agencies are presently analysing how best to develop an exit strategy from these measures and to determine how the epidemic may progress once measures are lifted. Mathematical models are currently providing short and long term forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based policymaking. We present a deterministic, age-structured transmission model that uses real-time data on confirmed cases requiring hospital care and mortality to provide up-to-date predictions on epidemic spread in ten regions of the UK. The model captures a range of age-dependent heterogeneities, reduced transmission from asymptomatic infections and produces a good fit to the key epidemic features over time. We simulated a suite of scenarios to assess the impact of differing approaches to relaxing social distancing measures from 7th May 2020 on the estimated number of patients requiring inpatient and critical care treatment, and deaths. With regard to future epidemic outcomes, we investigated the impact of reducing compliance, ongoing shielding of elder age groups, reapplying stringent social distancing measures using region based triggers and the role of asymptomatic transmission. We find that significant relaxation of social distancing measures from 7th May onwards can lead to a rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed by a sizeable, second epidemic wave. In all considered age-shielding based strategies, we projected serious demand on critical care resources during the course of the pandemic. The reintroduction and release of strict measures on a regional basis, based on ICU bed occupancy, results in a long epidemic tail, until the second half of 2021, but ensures that the health service is protected by reintroducing social distancing measures for all individuals in a region when required. Our work confirms the effectiveness of stringent non-pharmaceutical measures in March 2020 to suppress the epidemic. It also provides strong evidence to support the need for a cautious, measured approach to relaxation of lockdown measures, to protect the most vulnerable members of society and support the health service through subduing demand on hospital beds, in particular bed occupancy in intensive care units.


Assuntos
COVID-19 , Modelos Estatísticos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Criança , Previsões , Humanos , Pessoa de Meia-Idade , Pandemias , Anos de Vida Ajustados por Qualidade de Vida , SARS-CoV-2 , Reino Unido/epidemiologia , Adulto Jovem
4.
PLoS Comput Biol ; 16(10): e1008181, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031369

RESUMO

The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.


Assuntos
Imunidade Adaptativa/genética , Predisposição Genética para Doença/genética , Malária Falciparum/genética , Mutação/genética , Biologia Computacional , Evolução Molecular , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Vivax/epidemiologia , Malária Vivax/genética , Malária Vivax/imunologia , Modelos Genéticos , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia
5.
Euro Surveill ; 25(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33094713

RESUMO

BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Doadores de Sangue , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Vigilância da População , Adulto , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Geografia Médica , Humanos , Concentração Inibidora 50 , Masculino , Modelos Imunológicos , Testes de Neutralização , Pneumonia Viral/sangue , Prevalência , SARS-CoV-2 , Escócia/epidemiologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , População Urbana
6.
Parasitology ; 145(6): 731-739, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28809135

RESUMO

Human leucocyte antigens (HLAs) are responsible for the display of peptide fragments for recognition by T-cell receptors. The gene family encoding them is thus integral to human adaptive immunity, and likely to be under strong pathogen selection. Despite this, it has proved difficult to demonstrate specific examples of pathogen-HLA coevolution. Selection from multiple pathogens simultaneously could explain why the evolutionary signatures of particular pathogens on HLAs have proved elusive. Here, we present an individual-based model of HLA evolution in the presence of two mortality-causing pathogens. We demonstrate that it is likely that individual pathogen species causing high mortality have left recognizable signatures on the HLA genomic region, despite more than one pathogen being present. Such signatures are likely to exist at the whole-population level, and involve haplotypic combinations of HLA genes rather than single loci.


Assuntos
Genômica , Antígenos HLA/genética , Interações Hospedeiro-Patógeno/genética , Transcriptoma , Variação Antigênica/genética , Feminino , Haplótipos , Humanos , Masculino , Seleção Genética
7.
PLoS Pathog ; 11(7): e1005034, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26181911

RESUMO

The bacterial pathogen, Streptococcus pneumoniae (the pneumococcus), is a leading cause of life-threatening illness and death worldwide. Available conjugate vaccines target only a small subset (up to 13) of >90 known capsular serotypes of S. pneumoniae and, since their introduction, increases in non-vaccine serotypes have been recorded in several countries: a phenomenon termed Vaccine Induced Serotype Replacement (VISR). Here, using a combination of mathematical modelling and whole genome analysis, we show that targeting particular serotypes through vaccination can also cause their metabolic and virulence-associated components to transfer through recombination to non-vaccine serotypes: a phenomenon we term Vaccine-Induced Metabolic Shift (VIMS). Our results provide a novel explanation for changes observed in the population structure of the pneumococcus following vaccination, and have important implications for strain-targeted vaccination in a range of infectious disease systems.


Assuntos
Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/patogenicidade , Vacinação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sorotipagem , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas/imunologia , Virulência
8.
Immunogenetics ; 68(10): 755-764, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27517293

RESUMO

Killer-cell immunoglobulin-like receptors (KIRs) are encoded by one of the most polymorphic families in the human genome. KIRs are expressed on natural killer (NK) cells, which have dual roles: (1) in fighting infection and (2) in reproduction, regulating hemochorial placentation. Uniquely among primates, human KIR genes are arranged into two haplotypic combinations: KIR A and KIR B. It has been proposed that KIR A is specialized to fight infection, whilst KIR B evolved to help ensure successful reproduction. Here we demonstrate that a combination of infectious disease selection and reproductive selection can drive the evolution of KIR B-like haplotypes from a KIR A-like founder haplotype. Continued selection to survive and to reproduce maintains a balance between KIR A and KIR B.


Assuntos
Evolução Molecular , Haplótipos/genética , Infecções/genética , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Reprodução/genética , Humanos , Imunoglobulinas/imunologia
9.
Malar J ; 15: 26, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753833

RESUMO

BACKGROUND: Sickle haemoglobin (HbS) and haemoglobin C (HbC) are both caused by point mutations in the beta globin gene, and both offer substantial malaria protection. Despite the fact that the blood disorder caused by homozygosity for HbC is much less severe than that caused by homozygosity for HbS (sickle cell anaemia), it is the sickle mutation which has come to dominate many old-world malarious regions, whilst HbC is highly restricted in its geographical distribution. It has been suggested that this discrepancy may be due to sickle cell heterozygotes enjoying a higher level of malaria protection than heterozygotes for HbC. A higher fitness of sickle cell heterozygotes relative to HbC heterozygotes could certainly have allowed the sickle cell allele to spread more rapidly. However, observations that carrying either HbC or HbS enhances an individual's capacity to transmit malaria parasites to mosquitoes could also shed light on this conundrum. METHODS: A population genetic model was used to investigate the evolutionary consequences of the strength of malaria selection being correlated with either HbS frequency or HbC frequency. RESULTS: If the selection pressure from malaria is positively correlated with the frequency of either HbS or HbC, it is easier for HbS to succeed in the competitive interaction between the two alleles. CONCLUSIONS: A feedback process whereby the presence of variant haemoglobins increases the level of malaria selection in a population could have contributed to the global success of HbS relative to HbC, despite the former's higher blood disorder cost.


Assuntos
Hemoglobina C/metabolismo , Hemoglobinas/metabolismo , Malária/mortalidade , Alelos , Humanos , Malária/metabolismo , Malária/transmissão , Modelos Teóricos
10.
Proc Natl Acad Sci U S A ; 110(48): 19645-50, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24225852

RESUMO

Pathogen-mediated selection is commonly invoked as an explanation for the exceptional polymorphism of the HLA gene cluster, but its role in generating and maintaining linkage disequilibrium between HLA loci is unclear. Here we show that pathogen-mediated selection can promote nonrandom associations between HLA loci. These associations may be distinguished from linkage disequilibrium generated by other population genetic processes by virtue of being nonoverlapping as well as nonrandom. Within our framework, immune selection forces the pathogen population to exist as a set of antigenically discrete strains; this then drives nonoverlapping associations between the HLA loci through which recognition of these antigens is mediated. We demonstrate that this signature of pathogen-driven selection can be observed in existing data, and propose that analyses of HLA population structure can be combined with laboratory studies to help us uncover the functional relationships between HLA alleles. In a wider coevolutionary context, our framework also shows that the inclusion of memory immunity can lead to robust cyclical dynamics across a range of host-pathogen systems.


Assuntos
Evolução Biológica , Genética Populacional/métodos , Antígenos HLA/genética , Antígenos de Histocompatibilidade/genética , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Seleção Genética , Imunidade Adaptativa/genética , Animais , Etnicidade/genética , Humanos , Desequilíbrio de Ligação
11.
Br J Haematol ; 169(1): 117-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25521998

RESUMO

Genetic disorders of haemoglobin, particularly the sickle cell diseases and the alpha and beta thalassaemias, are the commonest inherited disorders worldwide. The majority of affected births occur in low-income and lower-middle income countries. Screening programmes are a vital tool to counter these haemoglobinopathies by: (i) identifying individual carriers and allowing them to make informed reproductive choices, and (ii) generating population level gene-frequency estimates, to help ensure the optimal allocation of public health resources. For both of these functions it is vital that the screen performed is suitably sensitive. One popular first-stage screening option to detect carriers of beta thalassaemia in low-income countries is the One Tube Osmotic Fragility Test (OTOFT). Here we introduce a population genetic framework within which to quantify the likely sensitivity and specificity of the OTOFT in different epidemiological contexts. We demonstrate that interactions between the carrier states for beta thalassaemia and alpha thalassaemia, glucose-6-phosphate dehydrogenase deficiency and Southeast Asian Ovalocytosis have the potential to reduce the sensitivity of OTOFTs for beta thalassaemia heterozygosity to below 70%. Our results therefore caution against the widespread application of OTOFTs in regions where these erythrocyte variants co-occur.


Assuntos
Epistasia Genética , Frequência do Gene , Programas de Rastreamento/métodos , Modelos Biológicos , Fragilidade Osmótica , Talassemia beta , Eliptocitose Hereditária/sangue , Eliptocitose Hereditária/diagnóstico , Eliptocitose Hereditária/genética , Feminino , Deficiência de Glucosefosfato Desidrogenase/sangue , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Masculino , Talassemia beta/sangue , Talassemia beta/diagnóstico , Talassemia beta/genética
12.
Nat Genet ; 37(11): 1253-7, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227994

RESUMO

The hemoglobinopathies, disorders of hemoglobin structure and production, protect against death from malaria. In sub-Saharan Africa, two such conditions occur at particularly high frequencies: presence of the structural variant hemoglobin S and alpha(+)-thalassemia, a condition characterized by reduced production of the normal alpha-globin component of hemoglobin. Individually, each is protective against severe Plasmodium falciparum malaria, but little is known about their malaria-protective effects when inherited in combination. We investigated this question by studying a population on the coast of Kenya and found that the protection afforded by each condition inherited alone was lost when the two conditions were inherited together, to such a degree that the incidence of both uncomplicated and severe P. falciparum malaria was close to baseline in children heterozygous with respect to the mutation underlying the hemoglobin S variant and homozygous with respect to the mutation underlying alpha(+)-thalassemia. Negative epistasis could explain the failure of alpha(+)-thalassemia to reach fixation in any population in sub-Saharan Africa.


Assuntos
Hemoglobina Falciforme/genética , Malária Falciparum/genética , Malária Falciparum/prevenção & controle , Plasmodium falciparum/crescimento & desenvolvimento , Traço Falciforme/genética , Talassemia alfa/genética , África Subsaariana/epidemiologia , Animais , Criança , Estudos de Coortes , Heterozigoto , Humanos , Incidência , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Traço Falciforme/epidemiologia , Talassemia alfa/epidemiologia
13.
Methods Mol Biol ; 2845: 197-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115668

RESUMO

Selective autophagic degradation of cellular components has been shown to be mediated by the interaction of LIR motif-containing proteins with ATG8-family proteins. Here, we present a detailed methodology for the in silico evaluation of potential binding between LIR motif-containing proteins and ATG8-family proteins. We visualize AlphaFold-predicted protein complexes using PyMOL to assess potential interactions, providing an effective computational tool for this purpose.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Ligação Proteica , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Motivos de Aminoácidos , Simulação por Computador , Biologia Computacional/métodos , Autofagia , Humanos , Software , Domínios e Motivos de Interação entre Proteínas
14.
Nat Commun ; 14(1): 740, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765050

RESUMO

In late 2020, the JCVI (the Joint Committee on Vaccination and Immunisation, which provides advice to the Department of Health and Social Care, England) made two important recommendations for the initial roll-out of the COVID-19 vaccine. The first was that vaccines should be targeted to older and vulnerable people, with the aim of maximally preventing disease rather than infection. The second was to increase the interval between first and second doses from 3 to 12 weeks. Here, we re-examine these recommendations through a mathematical model of SARS-CoV-2 infection in England. We show that targeting the most vulnerable had the biggest immediate impact (compared to targeting younger individuals who may be more responsible for transmission). The 12-week delay was also highly beneficial, estimated to have averted between 32-72 thousand hospital admissions and 4-9 thousand deaths over the first ten months of the campaign (December 2020-September 2021) depending on the assumed interaction between dose interval and efficacy.


Assuntos
COVID-19 , Epidemias , Humanos , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Inglaterra/epidemiologia , Epidemias/prevenção & controle , Vacinação
15.
Proc Natl Acad Sci U S A ; 106(50): 21242-6, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955437

RESUMO

Several human genetic disorders of hemoglobin have risen in frequency because of the protection they offer against death from malaria, sickle-cell anemia being a canonical example. Here we address the issue of why this highly protective mutant, present at high frequencies in subSaharan Africa, is uncommon in Mediterranean populations that instead harbor a diverse range of thalassemic hemoglobin disorders. We demonstrate that these contrasting profiles of malaria-protective alleles can arise and be stably maintained by two well-documented phenomena: an alleviation of the clinical severity of alpha- and beta-thalassemia in compound thalassemic genotypes and a cancellation of malaria protection when alpha-thalassemia and the sickle-cell trait are coinherited. The complex distribution of globin mutants across Africa and the Mediterranean can therefore be explained by their specific intracellular interactions.


Assuntos
Anemia Falciforme/genética , Epistasia Genética , Hemoglobinas Anormais/genética , Talassemia/genética , África , Frequência do Gene , Humanos , Malária/genética , Ilhas do Mediterrâneo
16.
Sci Rep ; 12(1): 8934, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624125

RESUMO

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.


Assuntos
Malária Falciparum , Malária , Talassemia beta , Membrana Eritrocítica/parasitologia , Heterozigoto , Humanos , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Talassemia beta/genética
17.
Proc Natl Acad Sci U S A ; 105(39): 15082-7, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18815379

RESUMO

Neisseria meningitis is a human commensal bacterium that occasionally causes life-threatening disease. As with a number of other bacterial pathogens, meningococcal populations comprise distinct lineages, which persist over many decades and during global spread in the face of high rates of recombination. In addition, the propensity to cause invasive disease is associated with particular "hyperinvasive" lineages that coexist with less invasive lineages despite the fact that disease does not contribute to host-to-host transmission. Here, by combining a modeling approach with molecular epidemiological data from 1,108 meningococci isolated in the Czech Republic over 27 years, we show that interstrain competition, mediated by immune selection, can explain both the persistence of multiple discrete meningococcal lineages and the association of a subset of these with invasive disease. The model indicates that the combinations of allelic variants of housekeeping genes that define these lineages are associated with very small differences in transmission efficiency among hosts. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations.


Assuntos
Evolução Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/patogenicidade , Seleção Genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , República Tcheca/epidemiologia , Feminino , Variação Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Neisseria meningitidis/classificação , Neisseria meningitidis/isolamento & purificação , Virulência/genética
18.
BMC Biol ; 8: 90, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20646263

RESUMO

Genome-wide association studies (GWAS) look for correlations between traits of interest and genetic markers spread throughout the genome. A recent study in BMC Genetics has found that populations of the malaria parasite Plasmodium vivax should be amenable to GWAS searching for a genetic basis of parasite pathogenicity. Geographical substructure in populations may, however, prove a problem in interpreting the results.


Assuntos
Estudo de Associação Genômica Ampla , Malária/parasitologia , Plasmodium/genética , Humanos , Malária Vivax/parasitologia , Plasmodium/patogenicidade , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade
19.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200261, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34053259

RESUMO

By mid-May 2020, cases of COVID-19 in the UK had been declining for over a month; a multi-phase emergence from lockdown was planned, including a scheduled partial reopening of schools on 1 June 2020. Although evidence suggests that children generally display mild symptoms, the size of the school-age population means the total impact of reopening schools is unclear. Here, we present work from mid-May 2020 that focused on the imminent opening of schools and consider what these results imply for future policy. We compared eight strategies for reopening primary and secondary schools in England. Modifying a transmission model fitted to UK SARS-CoV-2 data, we assessed how reopening schools affects contact patterns, anticipated secondary infections and the relative change in the reproduction number, R. We determined the associated public health impact and its sensitivity to changes in social distancing within the wider community. We predicted that reopening schools with half-sized classes or focused on younger children was unlikely to push R above one. Older children generally have more social contacts, so reopening secondary schools results in more cases than reopening primary schools, while reopening both could have pushed R above one in some regions. Reductions in community social distancing were found to outweigh and exacerbate any impacts of reopening. In particular, opening schools when the reproduction number R is already above one generates the largest increase in cases. Our work indicates that while any school reopening will result in increased mixing and infection amongst children and the wider population, reopening schools alone in June 2020 was unlikely to push R above one. Ultimately, reopening decisions are a difficult trade-off between epidemiological consequences and the emotional, educational and developmental needs of children. Into the future, there are difficult questions about what controls can be instigated such that schools can remain open if cases increase. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Modelos Teóricos , Pandemias , Adolescente , Adulto , COVID-19/virologia , Criança , Pré-Escolar , Inglaterra/epidemiologia , Feminino , Humanos , Masculino , Distanciamento Físico , SARS-CoV-2/patogenicidade , Instituições Acadêmicas/tendências , Adulto Jovem
20.
Infect Genet Evol ; 83: 104344, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32387563

RESUMO

Human Leukocyte Antigen (HLA) molecules play a vital role helping our immune system to detect the presence of pathogens. Previous work to try and ascertain which HLA alleles offer advantages against particular pathogens has generated inconsistent results. We have constructed an epidemiological model to understand why this may occur. The model captures the epidemiology of a multi strain pathogen for which the host's ability to generate immunological memory responses to particular strains depends on that host's HLA genotype. We find that an HLA allele's ability to protect against infection, as measured in a case control study, depends on the population frequency of that HLA allele. Furthermore, our capability to detect associations between HLA alleles and infection with a multi strain pathogen may be affected by the properties of the pathogen itself (i.e R0 and length of infectious period). Both host and pathogen genetics must be considered in order to identify true HLA associations. However, in the absence of detailed pathogen genetic information, a negative correlation between the frequency of an HLA type and its apparent protectiveness against disease caused by multi strain pathogen is a strong indication that the HLA type in question is well adapted to a subset of strains of that pathogen.


Assuntos
Doenças Transmissíveis , Antígenos HLA/genética , Interações Hospedeiro-Patógeno/fisiologia , Modelos Teóricos , Alelos , Estudos de Casos e Controles , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/genética , Doenças Transmissíveis/imunologia , Frequência do Gene , Genótipo , Interações Hospedeiro-Patógeno/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA