Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 115(6): 1244-1261, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33330989

RESUMO

Bile resistance is essential for enteric pathogens, as exemplified by Vibrio cholerae, the causative agent of cholera. The outer membrane porin OmpU confers bacterial survival and colonization advantages in the presence of host-derived antimicrobial peptides as well as bile. Expression of ompU is controlled by the virulence regulator ToxR. rpoE knockouts are accompanied by suppressor mutations causing ompU downregulation. Therefore, OmpU constitutes an intersection of the ToxR regulon and the σE -pathway in V. cholerae. To understand the mechanism by which the sigma factor σE regulates OmpU synthesis, we performed transcription studies using ompU reporter fusions and immunoblot analysis. Our data revealed an increase in ompU promoter activity in ΔrpoE strains, as well as in a ΔompU background, indicating a negative feedback regulation circuit of ompU expression. This regulation seems necessary, since elevated lethality rates of ΔrpoE strains occur upon ompU overexpression. Manipulation of OmpU's C-terminal portion revealed its relevance for protein stability and potency of σE release. Furthermore, ΔrpoE strains are still capable of elevating OmpU levels under membrane stress conditions triggered by the bile salt sodium deoxycholate. This study provides new details about the impact of σE on ompU regulation, which is critical to the pathogen's intestinal survival.


Assuntos
Adesinas Bacterianas/biossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator sigma/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Adesinas Bacterianas/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Porinas/biossíntese , Porinas/genética , Regiões Promotoras Genéticas/genética , Vibrio cholerae/metabolismo
2.
Mol Microbiol ; 110(5): 796-810, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218472

RESUMO

In Vibrio cholerae, virulence gene expression is regulated by a transmembrane-localized transcription factor complex designated as ToxRS. ToxR harbours two cysteines in the periplasmic domain that can form inter- and intramolecular disulfide bonds. In this study, we investigated the σE -dependent inner membrane proteolysis of ToxR, which occurs via the periplasmic-localized proteases DegS and DegP. Both proteases respond to the redox state of the two cysteine thiol groups of ToxR. Interestingly, in the presence of sodium deoxycholate, ToxR proteolysis is blocked independently of ToxS, whereas ToxR activation by bile salts requires ToxS function. From these data, we identified at least two levels of control for ToxR activation by sodiumdeoxycholate. First, bile inhibits ToxR degradation under starvation and alkaline pH or under conditions in which DegPS responds to the reduced disulfide bonds of ToxR. The second level links bile to ToxRS complex formation and further activation of its transcription factor activity. Overall, our data suggest a comprehensive bile sensory function for the ToxRS complex during host colonization.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Domínios Proteicos , Serina Endopeptidases/metabolismo , Compostos de Sulfidrila/metabolismo
3.
Antivir Ther ; 28(6): 13596535231220754, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085652

RESUMO

BACKGROUND: Lenacapavir (LEN) is a first-in-class inhibitor of human immunodeficiency virus type 1 (HIV-1) capsid function for the treatment of heavily treatment-experienced people with HIV (PWH) harbouring multidrug resistance in combination with an optimized background regimen (OBR). Here, we describe in vitro analysis of the interplay between entry inhibitors (EI; enfuvirtide, fostemsavir, ibalizumab, and maraviroc) susceptibility and LEN susceptibility in samples from 72 participants in the phase 2/3 CAPELLA study, as well as the emergence of resistance in CAPELLA through 52 weeks. METHODS: The phenotypic susceptibility to EIs of screening samples from participants was analysed using entry assays, and susceptibility to LEN was generated. Genotypic and phenotypic resistance to LEN was evaluated for subjects with virological failure through Week 52. RESULTS: Overall, viruses with resistance to EIs showed no cross-resistance to LEN, with a mean fold change from wild type close to 1.0. Of the 22 participants analysed for resistance through Week 52, 9 participants (13%) had emergence of capsid resistance mutation(s) while the remaining 13 participants (18%) had no change in the capsid sequence. CONCLUSION: The gag sequence from EI-resistant isolates did not affect LEN susceptibility. The lack of cross-resistance to LEN across ARV-resistant isolates supports the use of LEN in PWH regardless of their treatment history. During the second half-year period of the CAPELLA Study, development of LEN resistance was rare and was overall associated with functional LEN monotherapy due to either nonadherence or resistance-driven non-susceptibility to OBR.


Assuntos
Fármacos Anti-HIV , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Inibidores da Fusão de HIV/uso terapêutico , Maraviroc/uso terapêutico , Farmacorresistência Viral/genética
4.
Front Cell Infect Microbiol ; 13: 1250339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965262

RESUMO

Pseudomonas aeruginosa is a major human pathogen, particularly effective at colonizing the airways of patients with cystic fibrosis. Bacteriophages are highly abundant at infection sites, but their impact on mammalian immunity remains unclear. We previously showed that Pf4, a temperate filamentous bacteriophage produced by P. aeruginosa, modifies the innate immune response to P. aeruginosa infections via TLR3 signaling, but the underlying mechanisms remained unclear. Notably, Pf4 is a single-stranded DNA and lysogenic phage, and its production does not typically result in lysis of its bacterial host. We identified previously that internalization of Pf4 by human or murine immune cells triggers maladaptive viral pattern recognition receptors and resulted in bacterial persistence based on the presence of phage RNA. We report now that Pf4 phage dampens inflammatory responses to bacterial endotoxin and that this is mediated in part via bacterial vesicles attached to phage particles. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and play a key role in host pathogen interaction. Recently, evidence has emerged that OMVs differentially package small RNAs. In this study, we show that Pf4 are decorated with OMVs that remain affixed to Pf4 despite of purification steps. These phages are endocytosed by human cells and delivered to endosomal vesicles. We demonstrate that short RNAs within the OMVs form hairpin structures that trigger TLR3-dependent type I interferon production and antagonize production of antibacterial cytokines and chemokines. In particular, Pf4 phages inhibit CXCL5, preventing efficient neutrophil chemotaxis in response to endotoxin. Moreover, blocking IFNAR or TLR3 signaling abrogates the effect of Pf4 bound to OMVs on macrophage activation. In a murine acute pneumonia model, mice treated with Pf4 associated with OMVs show significantly less neutrophil infiltration in BAL fluid than mice treated with purified Pf4. These changes in macrophage phenotype are functionally relevant: conditioned media from cells exposed to Pf4 decorated with OMVs are significantly less effective at inducing neutrophil migration in vitro and in vivo. These results suggest that Pf4 phages alter innate immunity to bacterial endotoxin and OMVs, potentially dampening inflammation at sites of bacterial colonization or infection.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Membrana Externa Bacteriana/metabolismo , Receptor 3 Toll-Like , Infecções por Pseudomonas/microbiologia , Endotoxinas , Mamíferos
5.
Artigo em Inglês | MEDLINE | ID: mdl-31293982

RESUMO

The lifecycle of the causative agent of the severe secretory diarrheal disease cholera, Vibrio cholerae, is characterized by the transition between two dissimilar habitats, i.e., as a natural inhabitant of aquatic ecosystems and as a pathogen in the human gastrointestinal tract. Vibrio cholerae faces diverse stressors along its lifecycle, which require effective adaptation mechanisms to facilitate the survival fitness. Not surprisingly, the pathogen's transcriptome undergoes global changes during the different stages of the lifecycle. Moreover, recent evidence indicates that several of the transcription factors (i.e., ToxR, TcpP, and ToxT) and alternative sigma factors (i.e., FliA, RpoS, and RpoE) involved in transcriptional regulations along the lifecycle are controlled by regulated proteolysis. This post-translational control ensures a fast strategy by the pathogen to control cellular checkpoints and thereby rapidly respond to changing conditions. In this review, we discuss selected targets for regulated proteolysis activated by various stressors, which represent a key feature for fast adaptation of V. cholerae.


Assuntos
Adaptação Fisiológica/fisiologia , Proteólise , Estresse Fisiológico , Vibrio cholerae/metabolismo , Proteínas de Bactérias , Ecossistema , Face/microbiologia , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Estágios do Ciclo de Vida , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Vibrio cholerae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA